, Volume 41, Issue 1, pp 79–88 | Cite as

Assessment of synthetic chemicals for disruption of Rhynchophorus ferrugineus response to attractant-baited traps in an urban environment

  • Salvatore Guarino
  • Ezio Peri
  • Paolo Lo Bue
  • Maria Pia Germanà
  • Stefano Colazza
  • Leonid Anshelevich
  • Uzi Ravid
  • Victoria SorokerEmail author


The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera, Curculionidae), is one of the most severe pests of ornamental palm species in urban areas of Mediterranean countries. Aiming to discover inhibitory semiochemicals for RPW population management in urban environments, we conducted electroantennographic (EAG) screenings of 17 commercially available synthetic compounds, representing three groups of plant volatiles (isoprenoids, phenyl propanoid derivatives and fatty acid derivatives) known for their repellent effects toward insects. These tests were followed by trap-based screenings of EAG-active menthone, α-pinene and methyl salicylate, singly and in combination, under urban conditions. In EAG bioassays, RPW antennae of both sexes showed positive dose-dependent responses to 13 of the 17 synthetic chemicals with significant differences among them. In field trapping experiments, conducted in the city of Palermo, Italy, from weeks 31 to 38 in 2010 and 2011, α-pinene, tested singly or in combination with methyl salicylate (2010) or menthone (2011), reduced trap catches by about 30% to 40%. Methyl salicylate and menthone alone were inactive. In conclusion, RPW is significantly affected by α-pinene. This isoprenoid is a promising disruptant for semiochemical-based management of this pest. In addition, identification of a large number of EAG-active chemicals could serve as a database for future design of active repellents or attractants of RPW adults.


EAG Menthone Methyl salicylate α-pinene Red palm weevil Semiochemicals 



The authors are grateful to Anna Litovsky for her technical help in the behavioral bioassays, Saadia Reneh for his help in weevil maintenance, to Dr. Ally Harari for her comments on an earlier version of the manuscript and anonymous reviewers for their valuable remarks. The authors also wish to thank the commander of the fourth regiment “Guastatori” of Caserma Scianna – Palermo. Funding for this work was provided by the projects “FITOPALMINTRO” and “TECNOCONTROPURO” of the Sicilian Region and the Board of Israeli Date Palm Growers’ Association.


  1. Alagarmalai, J., Nestel, D., Dragushich, D., Nemny-Lavy, E., Anshelevich, L., Zada, A., et al. (2009). Identification of host attractants for the Ethiopian fruit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Journal of Chemical Ecology, 35, 542–551.PubMedCrossRefGoogle Scholar
  2. Blumberg, D. (2008). Date palm arthropod pests and their management in Israel. Phytoparasitica, 36, 411–448.CrossRefGoogle Scholar
  3. Bruce, T. G. A., & Pickett, J. A. (2011). Perception of plant volatile blends by herbivorous insects – finding the right mix. Phytochemistry, 72, 1605–1611.PubMedCrossRefGoogle Scholar
  4. Buyukozturk, H. D., Kutuk, H., & Birisik, N. (2011). Current status of red palm weevil in Turkey. EPPO Bulletin, 41, 142–144.CrossRefGoogle Scholar
  5. Caissard, J. C., Meekijjironenroj, A., Baudino, S., & Anstett, M. C. (2004). Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae). American Journal of Botany, 91, 1190–1199.PubMedCrossRefGoogle Scholar
  6. Cook, S. M., Khan, Z. N., & Pickett, J. A. (2007). The use of push and pull strategies in integrated pest management. Annual Review of Entomology, 52, 375–400.PubMedCrossRefGoogle Scholar
  7. EU Decision 2007/365/EC (2007). Commission Decision of 25 May 2007 on emergency measures to prevent the introduction into and the spread within the Community of Rhynchophorus ferrugineus (Olivier).Google Scholar
  8. EU Decision 2008/776/EC (2008). Commission Decision of 6 October 2008 amending Decision 2007/365/EC on emergency measures to prevent the introduction into and the spread within the Community of Rhynchophorus ferrugineus (Olivier).Google Scholar
  9. EU Decision 2010/467/EU (2010). Commission Decision of 17 August 2010 amending Decision 2007/365/EC as regards the susceptible plants and the measures to be taken in cases where Rhynchophorus ferrugineus (Olivier) is detected.Google Scholar
  10. Dembilio, O., Jacas, J. A., & Llácer, E. (2009). Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (Col. Curculionidae)? Journal of Applied Entomology, 133, 565–567.CrossRefGoogle Scholar
  11. Dickens, J. C., Billings, R. F., & Payne, T. L. (1991). Green leaf volatiles: A ubiquitous chemical signal modifies insect sex pheromone responses. In I. Hrdy (Ed.), Insect chemical ecology. Prague, Czech Republic: Academia Praha ed.Google Scholar
  12. Dickens, J. C., Billings, R. F., & Payne, T. L. (1992). Green leaf volatiles interrupt aggregation pheromone response in bark beetles infesting southern pines. Experientia, 48, 523–524.CrossRefGoogle Scholar
  13. EPPO. (2008). Data sheets on quarantine pests Rhynchophorus ferrugineus. EPPO Bulletin, 38, 55–59.CrossRefGoogle Scholar
  14. Faleiro, J. R. (2006). A review on the issues and management of red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science, 26, 135–154.Google Scholar
  15. Faleiro, J. R., Ashok Kumar, J., & Rangnekar, P. A. (2002). Spatial distribution of red palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) in coconut plantations. Crop Protection, 21, 171–176.CrossRefGoogle Scholar
  16. Ferry, M. (2010). The red palm weevil in California. Palms, 54, 203.Google Scholar
  17. Ferry, M., & Gomez, S. (2002). The red palm weevil in the Mediterranean area. Palms, 46, 172–178.Google Scholar
  18. Garcia, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E., & Sosa, M. E. (2005). Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Management Science, 61, 612–618.PubMedCrossRefGoogle Scholar
  19. Giblin-Davis, R. M. (2001). Borers of palms. In F. W. Howard, D. Moore, R. M. Giblin-Davis, & R. G. Abad (Eds.), Insects on palms (pp. 267–305). Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
  20. Giblin-Davis, R. M., Oehlschlager, A. C., Perez, A., Gries, G., Gries, R., Weissling, T. J., et al. (1996). Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Florida Entomologist, 79, 153–167.CrossRefGoogle Scholar
  21. Gillij, Y. G., Gleisera, R. M., & Zygadlo, J. A. (2008). Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresource Technology, 99, 2507–2515.PubMedCrossRefGoogle Scholar
  22. Guarino, S., Lo Bue, P., Peri, E., & Colazza, S. (2011). Responses of Rhynchophorus ferrugineus adults to selected synthetic palm esters: electroantennographic studies and trap catches in an urban environment. Pest Management Science, 67, 77–81.PubMedCrossRefGoogle Scholar
  23. Gunawardena, N. E. (1994). Terpenes as potential semiochemicals for the coconut pest Rhynchophorus ferrugineus (Coleoptera: Curculionidae): an electroantennogram assay. Journal of the National Science Council of Sri Lanka, 22, 35–42.Google Scholar
  24. Gunawardena, N. E., Kern, F., Janssen, E., Meegoda, C., Schäfer, D., Vostrowsky, O., et al. (1998). Host attractants for red weevil, Rhynchophorus ferrugineus: identification, electrophysiological activity, and laboratory bioassay. Journal of Chemical Ecology, 24, 425–437.CrossRefGoogle Scholar
  25. Hallett, R. H., Oehlschlager, A. C., & Borden, J. H. (1999). Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). International Journal of Pest Management, 45, 231–237.CrossRefGoogle Scholar
  26. Hassanali, A., Herren, H., Khan, Z. R., Pickett, J. A., & Woodcock, C. M. (2008). Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society B, 363, 611–621.CrossRefGoogle Scholar
  27. Hori, M. (1998). Repellency of rosemary oil against Myzus persicae in a laboratory and in a screenhouse. Journal of Chemical Ecology, 24, 1425–1432.CrossRefGoogle Scholar
  28. Hori, H. (2004). Repellency of shiso oil components against the cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Applied Entomology and Zoology, 39, 357–362.CrossRefGoogle Scholar
  29. Kessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology, 53, 299–328.PubMedCrossRefGoogle Scholar
  30. Lo Bue, B., Guarino, S., Lucido, P., Peri, E., Pulizzi, M., & Colazza, S. (2010). La cattura di adulti del Punteruolo rosso palme con trappole a feromone e allomoni in ambiente urbano. Protezione delle Colture, 4, 46–49.Google Scholar
  31. Longo, S., Colazza, S., Cacciola, S. O., & Magnano di San Lio, G. (2008). Il caso delle palme. Supplemento a “I Georgofili. Atti dell’Accademia dei Georgofili” Anno 2007 serie VIII, 4, 65–102.Google Scholar
  32. Mauchline, A. L., Juliet, O. L., Martin, A. P., Poppy, G. M., & Powell, W. (2005). The effects of non-host plant essential oil volatiles on the behaviour of the pollen beetle Meligethes aeneus. Entomologia Experimentalis et Applicata, 114, 181–188.CrossRefGoogle Scholar
  33. Müller, G. C., Junnila, A., Kravchenko, V. D., Revay, E. E., Butler, J., & Schlein, Y. (2008). Indoor protection against mosquito and sand fly bites: a comparison between citronella, linalool, and geraniol candles. Journal of the American Mosquito Control Association, 24, 150–153.PubMedCrossRefGoogle Scholar
  34. Nijholt, W. W., & Schönherr, J. (1976). Chemical response behaviour of scolytids in West Germany and western Canada. Canadian Forest Service Bi-Month Resource Notes, 32, 31–32.Google Scholar
  35. Norlander, G. (1990). Limonene inhibits the attraction to α-pinene in the pine weevils Hylobius abietis and H. pinastri. Journal of Chemical Ecology, 16, 1307–1320.CrossRefGoogle Scholar
  36. Oehlschlager, C. (2007). Optimizing trapping of palm weevils and beetles. Acta Horticulturae, 736, 347–368.Google Scholar
  37. Oehlschlager, A. C., & Gonzalez, L. (2001). Advances in trapping and repellency of palm weevils. in Proceedings of the Second International Conference on Date Palms (Al-Ain, UAE)
  38. Oluwafemi, S., Bruce, T. J. A., Pickett, J. A., Ton, J., & Birkett, M. A. (2011). Behavioural responses of the leafhopper, Cicadulina storeyi China, a major vector of maize streak virus, to volatile cues from intact and leafhopper-damaged maize. Journal of Chemical Ecology, 37, 40–48.PubMedCrossRefGoogle Scholar
  39. Ômura, H., Kuwahara, Y., & Tanabe, T. (2002). 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. Journal of Chemical Ecology, 28, 2601–2612.PubMedCrossRefGoogle Scholar
  40. Oyedele, A. O., Gbolade, A. A., Sosan, M. B., Adewoyin, F. B., Soyelu, O. L., & Orafidiya, O. O. (2002). Formulation of an effective mosquito-repellent topical product from lemongrass oil. Phytomedicine, 9, 259–262.PubMedCrossRefGoogle Scholar
  41. Rahalkar, G. W., Tamhankar, A. J., & Shantaram, K. (1978). An artificial diet for rearing red palm weevil, Rhynchophorus ferrugineus (Oliv.), a serious pest of the coconut palm and other cultivated palms. Journal of Plant Crops, 6, 61–64.Google Scholar
  42. EPPO Reporting Service (2009). First record of Rhynchophorus ferrugineus in Curaçao, Netherlands Antilles and first record of Rhynchophorus ferrugineus in Morocco. Reporting/2009/Rse-0901.pdf
  43. Rochat, D., Malosse, C., Lettere, M., Ducrot, P. H., Zagatti, P., Renou, M., et al. (1991). Male-produced aggregation pheromone of the American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae), collection, identification, electrophysiological activity and laboratory bioassay. Journal of Chemical Ecology, 17, 1221–1230.CrossRefGoogle Scholar
  44. Roda, A., Kairo, M., Damian, T., Franken, F., Heidweiller, K., Johanns, C., et al. (2011). Red palm weevil (Rhynchophorus ferrugineus), an invasive pest recently found in the Caribbean that threatens the region. EPPO Bulletin, 41, 116–121.CrossRefGoogle Scholar
  45. Saim, S., & Meloan, C. E. (1986). Compounds from leaves of bay (Laurus nobilis L.) as repellents for Tribolium castaneum (Herbst) when added to wheat flour. Journal of Stored Products Research, 22, 141–144.CrossRefGoogle Scholar
  46. Schiebe, C., Blazenec, M., Jakus, R., Unelius, C. R., & Schlyter, F. (2011). Semiochemical diversity diverts bark beetle attacks from Norway spruce edges. Journal of Applied Entomology, 135, 726–737.CrossRefGoogle Scholar
  47. Schroeder, L. M., & Lindelow, A. (1989). Attraction of scolytids and associated beetles by different absolute amounts and proportions of α-pinene and ethanol. Journal of Chemical Ecology, 15, 807–817.CrossRefGoogle Scholar
  48. Sfara, V., Zerba, E. N., & Alzogaray, R. A. (2009). Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. Journal of Medical Entomology, 46, 511–515.PubMedCrossRefGoogle Scholar
  49. Soroker, V., Blumberg, D., Haberman, A., Hamburger-Rishard, M., Rene, S., Tabelaev, S., et al. (2005). Current status of red palm weevil infestation in date palm plantations in Israel. Phytoparasitica, 33, 97–106.CrossRefGoogle Scholar
  50. Statsoft Inc. (2001). Statistica (data analysis software system), version 6. Vigonza, Italy: StatSoft Italia S.r.l.Google Scholar
  51. Tripathi, A. K., Prajapati, V., Verma, N., Bahl, J. R., Bansal, R. P., Khanuja, S. P. S., et al. (2002). Bioactivities of the leaf essential oils of Curcuma longa (Var. Ch-66) on three species of stored-product beetles (Coleoptera). Journal of Economic Entomology, 95, 183–189.PubMedCrossRefGoogle Scholar
  52. Tunón, H., Thorsell, W., Mikiver, W., & Malander, I. (2006). Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia, 77, 257–261.PubMedCrossRefGoogle Scholar
  53. Wattanapongsiri, A. (1966). A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Dept. of Agriculture Science Bulletin Bangkok, 1, 328.Google Scholar
  54. Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36, 80–100.PubMedCrossRefGoogle Scholar
  55. Zhang, Q. H., & Schlyter, F. (2004). Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 6, 1–20.CrossRefGoogle Scholar
  56. Zhang, Q. H., Schlyter, F., & Anderson, P. (1999). Green leaf volatiles interrupt pheromone response of spruce bark beetle Ips typographus. Journal of Chemical Ecology, 25, 2847–2861.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  • Salvatore Guarino
    • 1
  • Ezio Peri
    • 1
  • Paolo Lo Bue
    • 1
  • Maria Pia Germanà
    • 1
  • Stefano Colazza
    • 1
  • Leonid Anshelevich
    • 2
  • Uzi Ravid
    • 3
  • Victoria Soroker
    • 2
    Email author
  1. 1.Department DEMETRAUniversità degli Studi di PalermoPalermoItaly
  2. 2.Agricultural Research Organization, Department of EntomologyThe Volcani CenterBet DaganIsrael
  3. 3.Agricultural Research OrganizationNewe Ya’ar Research CenterRamat YishayIsrael

Personalised recommendations