, Volume 39, Issue 5, pp 429–435 | Cite as

Side effects of fungicides on the abundance and the species diversity of the natural populations of Drosophila and their hymenopterous parasitoids in orchards

  • Jean-Marie DelpuechEmail author
  • Roland Allemand


Within entomophagous insects, hymenopterous parasitoids are important regulators of natural populations of insects including pests. Pesticide treatments are largely used in orchards for economic reasons. These treatments allow for greater productivity, but they may also impact upon non-target insect populations. Drosophila and their hymenopterous parasitoids are abundant in orchards and are not direct targets of pesticide treatments. In this work, natural populations of Drosophila and their parasitoids were monitored from June to November, and their abundance was reported from two types of orchards. One type was under conventional pesticide treatments, mostly fungicides (“Treated plot”), and the other was under low-input treatments (“Low-input plot”). Five Drosophila species and five parasitoid species were present in both types of orchards. A time effect on abundance was found with two peaks of abundance, one in August and the other in autumn (October), corresponding to a fluctuation of numbers depending on the availability of resources. When comparing insect abundance between the two types of plots, the abundance in the Treated plot was found to be lower than or equal to that in the Low-input plot. Furthermore, a significant decrease in the abundance of two scarce parasitoid species (Leptopilina heterotoma and Asobara tabida) that could lead to their disappearance was also observed. The results are discussed in the context of the diverse lethal and sub-lethal effects of pesticides on the development and reproduction of natural populations of insects and their importance as natural enemies.


Asobara Leptopilina Pesticides Sampling Traps 



We are thankful to INRA station Gotheron (F. Combe), F. Fleury and C. Lemaitre for their help. This work has benefited from a PNETOX grant from the French Ministry of Environment.


  1. Allemand, R., Fleury, F., Lemaitre, C., & Boulétreau, M. (1999). Dynamique des populations et interactions competitives chez deux espèces de Leptopilina, parasitoïdes de drosophiles, dans la vallée du Rhône (Hymenoptera: Figitidae). Annales de la Société Entomologique de France (Nouvelle série), 35, 97–103.Google Scholar
  2. Biddinger, D. J., Felland, C. H., & Hull, L. A. (1994). Parasitism of tufted apple bud moth (Lepidoptera: Tortricidae) in conventional insecticide and pheromone-treated Pennsylvania apple orchards. Environmental Entomology, 23, 1568–1579.Google Scholar
  3. Carmo, E. L., Bueno, A. F., & Bueno, R. C. O. F. (2010). Pesticide selectivity for the insect egg parasitoid Telenomus remus. Biocontrol, 55, 455–464.CrossRefGoogle Scholar
  4. Croft, B. A. (1990). Arthropod biological control agents and pesticides. New York, NY: J. Wiley.Google Scholar
  5. Delpuech, J. M. (1993). La drosophile ou mouche du vinaigre. Lutte chimique, protection physique et autres possibilités de maitrîse. Phytoma – La Défense des Végétaux, 454, 45–47.Google Scholar
  6. Delpuech, J. M., & Meyet, J. (2003). Reduction in the sex ratio of the progeny of a parasitoid wasp (Trichogramma brassicae) surviving the insecticide chlorpyrifos. Archives of Environmental Contamination and Toxicology, 45, 203–208.PubMedCrossRefGoogle Scholar
  7. Delpuech, J. M., Froment, B., Fouillet, P., Pompanon, F., Janillon, S., & Boulétreau, M. (1998a). Inhibition of sex pheromone communications of Trichogramma brassicae (Hymenoptera) by the insecticide chlorpyrifos. Environmental Toxicology and Chemistry, 17, 1107–1113.Google Scholar
  8. Delpuech, J. M., Gareau, E., Terrier, O., & Fouillet, P. (1998b). Sublethal effects of the insecticide chlorpyrifos on the sex pheromonal communication of Trichogramma brassicae. Chemosphere, 36, 1775–1785.CrossRefGoogle Scholar
  9. Delpuech, J. M., Legallet, B., Terrier, O., & Fouillet, P. (1999). Modifications of the sex pheromonal communication of Trichogramma brassicae by a sublethal dose of deltamethrin. Chemosphere, 38, 729–739.PubMedCrossRefGoogle Scholar
  10. Delpuech, J. M., Legallet, B., & Fouillet, P. (2001). Partial compensation of the sublethal effect of delthamethrin on the sex pheromonal communication of Trichogramma brassicae. Chemosphere, 42, 985–991.PubMedCrossRefGoogle Scholar
  11. Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.PubMedCrossRefGoogle Scholar
  12. Fleury, F., Ris, N., Allemand, R., Fouillet, P., Carton, Y., & Bouletreau, M. (2004). Ecological and genetic interactions in Drosophila–parasitoids communities: a case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France. Genetica, 120, 181–194.PubMedCrossRefGoogle Scholar
  13. Fleury, F., Gibert, P., Ris, N. & Allemand, R. (2009). Ecology and life history evolution of frugivorous Drosophila parasitoids. Advances in Parasitology, 70, 3–44.PubMedCrossRefGoogle Scholar
  14. Godfray, H. C. J. (1994). Parasitoids. Behavioral and evolutionary ecology. Princeton, NJ, USA: Princeton University Press.Google Scholar
  15. Jepsen, S. J., Rosenheim, J. A., & Matthews, C. E. (2007). The impact of sulfur on the reproductive success of Anagrus spp. parasitoids in the field. Biocontrol, 52, 599–612.CrossRefGoogle Scholar
  16. Johansen, N. S., Moen, L. H., & Egaas, E. (2007). Sterol demethylation inhibitor fungicides as disruptors of insect development and inducers of glutathione S-transferase activities in Mamestra brassicae. Comparative Biochemistry and Physiology C - Toxicology & Pharmacology, 145, 473–483.CrossRefGoogle Scholar
  17. Komeza, N., Fouillet, P., Boulétreau, M., & Delpuech, J. M. (2001). Modification, by the insecticide chlorpyrifos, of the behavioral response to kairomones of a Drosophila parasitoid, Leptopilina boulardi. Archives of Environmental Contamination and Toxicology, 41, 436–442.PubMedCrossRefGoogle Scholar
  18. Laird, R. A., & Addicott, J. F. (2008). ‘Fungicide application method’ and the interpretation of mycorrhizal fungus–insect indirect effects. Acta Oecologia - International Journal of Ecology, 34, 214–220.CrossRefGoogle Scholar
  19. Liu, F., Bao, S. W., & Song, Y. (2010). Effects of imidacloprid on the orientation behavior and parasitizing capacity of Anagrus nilaparvatae, an egg parasitoid of Nilaparvata lugens. Biocontrol, 55, 473–483.CrossRefGoogle Scholar
  20. Mani, M., & Krishnamoorthy, A. (1997). Effects of different pesticides upon the wax scale parasitoid, Anicetus ceylonensis How (Hym: Encyrtidae). International Journal of Pest Management, 43, 123–126.CrossRefGoogle Scholar
  21. Matlock, R. B., & de la Cruz, R. (2002). An inventory of parasitic Hymenoptera in banana plantations under two pesticide regimes. Agriculture Ecosystem and Environment, 93, 147–164.CrossRefGoogle Scholar
  22. Michaud, J. P. (2001). Responses of two ladybeetles to eight fungicides used in Florida citrus: Implications for biological control. Journal of Insect Science, 1, 1–6.Google Scholar
  23. Moreby, S. J., Sotherton, N. W., & Jepson, P. C. (1997). The effects of pesticides on species of non-target Heteroptera inhabiting cereal fields in Southern England. Pesticide Science, 51, 39–48.CrossRefGoogle Scholar
  24. Moura, A. P., Carvalho, G. A., Moscardini, V. F., Marques, M. C., & Souza, J. R. (2009). Toxicity of pesticides recommended in the integrated apple production (IAP) to populations of Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotropical Entomology, 38, 395–404.PubMedCrossRefGoogle Scholar
  25. Mussen, E. C., Lopez, J. E., & Peng, C. Y. S. (2004). Effect of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environmental Entomology, 33, 1151–1154.CrossRefGoogle Scholar
  26. Rafalimanana, H., Kaiser, L., & Delpuech, J. M. (2002). Stimulating effects of the insecticide chlorpyrifos on host searching and infestation efficacy of a parasitoid wasp. Pest Management Science, 58, 321–328.PubMedCrossRefGoogle Scholar
  27. Raudonis, L., Surviliene, E., & Valiuskaite, A. (2004). Toxicity of pesticides to predatory mites and insects in apple-tree site under field conditions. Environmental Toxicology, 19, 291–295.PubMedCrossRefGoogle Scholar
  28. Stark, J. D., Vargas, R., & Banks, J. E. (2007). Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. Journal of Economic Entomology, 100, 1027–1032.PubMedCrossRefGoogle Scholar
  29. Sutherland, A. M., Gubler, W. D., & Parrella, M. P. (2010). Effects of fungicides on a mycophagous coccinellid may represent integration failure in disease management. Biological Control, 54, 292–299.CrossRefGoogle Scholar
  30. Udayagiri, S., Norton, A. P., & Welter, S. C. (2000). Integrating pesticide effects with inundative biological control: interpretation of pesticide toxicity curves for Anaphes iole in strawberries. Entomologia Experimentalis et Applicata, 95, 87–95.CrossRefGoogle Scholar
  31. Van de Veire, M., Sterk, G., van der Staaij, M., Ramakers, P. M. J., & Thirry, L. (2002). Sequential testing scheme for the assessment of the side-effects of plant protection products on the predatory bug Orius laevigatus. Biocontrol, 47, 101–113.CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2011

Authors and Affiliations

  1. 1.Université de Lyon, Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations