Skip to main content

Five Inspiring Course (Re-)Designs

Examples of Innovations in Teaching and Learning BISE

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    https://crowde.net/.

References

  1. Bork D, Fill HG, Karagiannis D, Miron ET, Tantouris N (2015) Walch M (2015) Conceptual modelling for smart cities: a teaching case. Interact Des Archit 27:10–28

    Google Scholar 

  2. Bork D, Buchmann R, Hawryszkiewycz I, Karagiannis D, Tantouris N, Walch M (2016) Using conceptual modeling to support innovation challenges in smart cities. In: 14th IEEE international conference on smart city, Sydney, pp 1317–1324

  3. Bork D, Buchmann RA, Karagiannis D, Moonkun L, Miron ET (2019) An open platform for modeling method conceptualization: The OMiLAB digital ecosystem. Commun Assoc Inf Syst (under review)

  4. Buchmann RA, Ghiran AM (2017) Engineering the cooking recipe modelling method: a teaching experience report. In: Proceedings of PrOse 2017, CEUR-WS 1999(5). ftp://SunSITE.Informatik.RWTH-Aachen.DE/pub/publications/CEUR-WS/Vol-1999.zip. Accessed 23 Jan 2019

  5. Crook C, Schofield L (2017) The video lecture. Internet High Educ 34:56–64

    Article  Google Scholar 

  6. Dieterle S, Koschmider A, Reichenberger T, Schoder D (2018) Crowde: Individuelles Lernen durch individualisierte Klausuren. In: Krömker D, Schroeder U (Eds.) DeLFI 2018 - Die 16. E-Learning Fachtagung Informatik, Goethe-Universität Frankfurt am Main, 10.-13. September 2018. Lecture notes in informatics, vol 248, pp 287–288

  7. Erenli K (2016) Generation I(mmersion) – how to meet learner expectations of tomorrow. Int J Adv Corp Learn 9(1):19–25

    Article  Google Scholar 

  8. Guo PJ, Kim J, Rubin R (2014) How video production affects student engagement: an empirical study of MOOC videos. In: 1st ACM conference on learning @ Scale, Atlanta, pp 41–50

  9. Guthrie CH (2014) Who are we teaching? The learning expectations of “digital tribes” in the classroom. Int J e-Educ e-Bus e-Manag e-Learn 4(2):146–150

    Google Scholar 

  10. Hattie J, Timperley H (2007) The power of feedback. Rev Educ Res 77(1):81–112

    Article  Google Scholar 

  11. Jung R, Lehrer C (2017) Guidelines for education in business and information systems engineering at tertiary institutions. Bus Inf Syst Eng 59(3):189–203

    Article  Google Scholar 

  12. Karagiannis D (2016) Conceptual modelling methods: the AMME agile engineering approach. In: International conference on informatics in economy, LNBIP 273, Springer, pp 3–19

  13. Karagiannis D, Buchmann RA, Burzynski P, Reimer U, Walch M (2016a) Fundamental conceptual modeling languages in OMiLAB. In: Domain-specific conceptual modeling. Springer, Cham pp 3–30

  14. Karagiannis D, Mayr HC, Mylopoulos J (2016b) Domain-specific conceptual modeling. Springer, New York

    Book  Google Scholar 

  15. Karagiannis D, Burzynski P, Miron ET (2017) The IMKER case study. http://vienna.omilab.org/repo/files/Bee-Up/The_IMKER_Case_Study.pdf. Accessed 2 July 2018

  16. Koschmider A, Buschfeld D (2016) Shifting the process of exam preparation towards active learning: a crowdsourcing based approach. In: Informatik 2016. Lecture Notes in Informatics, vol 259

  17. Koschmider A, Schaarschmidt M (2017) A crowdsourcing-based learning approach to activate active learning. In: DeLFI & Bildungsräume 2017, Lecture Notes in Informatics, vol 273, pp 99–10

  18. Krathwohl DR (2002) A revision of Bloom’s taxonomy: an overview. Theory Pract 41:212–218

    Article  Google Scholar 

  19. Lehmann K, Söllner M, Leimeister JM (2015) Der Wert von IT-gestütztem Peer Assessment zur Unterstützung des Lernens in einer universitären Massenlehrveranstaltung. https://www.alexandria.unisg.ch/239338/. Accessed 19 Dec 2018

  20. McPherson MS, Bacow LS (2015) Online higher education: beyond the hype cycle. J Econ Perspect 29(4):135–154

    Article  Google Scholar 

  21. Österle H, Becker J, Frank U, Hess T, Karagiannis D, Krcmar H, Loos P, Mertens P, Oberweis A, Sinz E (2011) Memorandum on design-oriented information systems research. Eur J Inf Syst 20(1):7–10

    Article  Google Scholar 

  22. Pinzaru F, Vatamanescu E, Mitan A, Vitelar A, Savulescu R, Noaghea C, Balan M (2016) Millennials at work: investigating the specificity of generation Y versus other generations. Manag Dyn Knowl Econ 4(2):173–192

    Google Scholar 

  23. Sandkuhl K, Fill HG, Hoppenbrouwers S, Krogstie J, Leue A, Matthes F, Opdahl A, Schwabe G, Uludag O, Winter R (2016) Enterprise modelling for the masses—from elitist discipline to common practice. In: Proceedings of PoEM 2016, LNBIP 267, Springer, pp 225–240

  24. Sedrakyan G, Snoeck M (2017) Cognitive feedback and behavioral feedforward automation perspectives for modeling and validation in a learning context. In: International conference on model-driven engineering and software development. CCIS, vol 692, Springer, pp 70–92

  25. Sedrakyan G, Snoeck M, Poelmans S (2014) Assessing the effectiveness of feedback enabled simulation in teaching conceptual modeling. Comput Educ 78:367–382

    Article  Google Scholar 

  26. Sedrakyan G, De Weerdt J, Snoeck M (2016) Process-mining enabled feedback: “tell me what I did wrong” vs. “tell me how to do it right”. Comput Hum Behav 57:352–376

    Article  Google Scholar 

  27. Sedrakyan G, Poelmans S, Snoeck M (2017) Assessing the influence of feedback-inclusive rapid prototyping on understanding the semantics of parallel UML statecharts by novice modelers. Inf Softw Technol 82:159–172

    Article  Google Scholar 

  28. Serral Asensio E, Snoeck M (2016) Conceptual framework for feedback automation in SLEs. Smart Educ E-Learn. Springer, Cham, pp 97–107

    Google Scholar 

  29. Serral Asensio E, De Weerdt J, Sedrakyan G, Snoeck M (2016) Automating immediate and personalized feedback taking conceptual modelling education to a next level. In: IEEE 10th international conference on research challenges in information science, Grenoble, p 439

  30. Snoeck M, Haesen R, Buelens H, De Backer M, Monsieur G (2007) Computer aided modelling exercises. Inform Educ 6(1):231–248

    Google Scholar 

  31. Strayer JF (2012) How learning in an inverted classroom influences cooperation, innovation and task orientation. Learn Environ Res 15(2):171–193

    Article  Google Scholar 

  32. Strecker S, Kundisch D, Lehner F, Leimeister JM, Schubert P (2018) Higher education and the opportunities and challenges of educational technology. Bus Inf Syst Eng 60(2):181–189

    Article  Google Scholar 

  33. The ADOxx metamodeling platform (2018) https://www.adoxx.org/. Accessed 2 July 2018

  34. The BEE-UP Modeling Tool (2018) http://austria.omilab.org/psm/content/bee-up. Accessed 2 July 2018

  35. The OMiLAB web portal (2018) http://austria.omilab.org/. Accessed 2 July 2018

  36. Van Merriënboer JJ, Kirschner PA (2012) Ten steps to complex learning: a systematic approach to four-component instructional design. Routledge, New York

    Book  Google Scholar 

  37. Walch M (2018) Operating cyber-physical systems with microservices: the s*IoT conceptual modelling approach. In: Accepted for 7th international congress on advanced applied informatics, Yonago

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Strecker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strecker, S., Baumöl, U., Karagiannis, D. et al. Five Inspiring Course (Re-)Designs. Bus Inf Syst Eng 61, 241–252 (2019). https://doi.org/10.1007/s12599-019-00584-5

Download citation