Recombinant Service Systems Engineering

Abstract

Although many methods have been proposed for engineering service systems and customer solutions, most of these approaches give little consideration to recombinant service innovation. Recombinant innovation refers to reusing and integrating resources that were previously unconnected. In an age of networked products and data, we can expect that many service innovations will be based on adding, dissociating, and associating existing value propositions by accessing internal and external resources instead of designing them from scratch. The purpose of this paper is to identify if current service engineering approaches account for the mechanisms of recombinant innovation and to design a method for recombinant service systems engineering. In a conceptual analysis of 24 service engineering methods, the study identified that most methods (1) focus on designing value propositions instead of service systems, (2) view service independent of physical goods, (3) are either linear or iterative instead of agile, and (4) do not sufficiently address the mechanisms of recombinant innovation. The paper discusses how these deficiencies can be remedied and designs a revised service systems engineering approach that reorganizes service engineering processes according to four design principles. The method is demonstrated with the recombinant design of a service system for predictive maintenance of agricultural machines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Antonelli C, Krafft J, Quatraro F (2010) Recombinant knowledge and growth: the case of ICTs. Struct Chang Econ Dyn 21(1):50–69. https://doi.org/10.1016/j.strueco.2009.12.001

    Article  Google Scholar 

  2. Backhaus K, Becker J, Beverungen D, Frohs M, Knackstedt R, Müller O, Steiner M, Weddeling M (2010) Vermarktung hybrider Leistungsbündel: Das ServPay-Konzept. Springer, Heidelberg

    Google Scholar 

  3. Baida Z (2006) Software-aided service bundling: intelligent methods and tools for graphical service modelling. Doctoral dissertation, Vrije Universiteit Amsterdam

  4. Becker J, Beverungen D, Knackstedt R, Matzner M (2009a) Configurative service engineering – a rule-based configuration approach for versatile service processes in corrective maintenance. In: Proceedings of the 42nd annual Hawaii international conference on system sciences. Big Island, Hawaii, pp 1–10

  5. Becker J, Beverungen D, Knackstedt R, Müller O (2009b) Model-based decision support for the customer-specific configuration of value bundles. Enterp Model Inf Syst Archit 4(1):26–38

    Google Scholar 

  6. Becker J, Beverungen D, Knackstedt R (2009c) The challenge of conceptual modeling for product–service systems: status-quo and perspectives for reference models and modeling languages. Inf Syst e Bus Manag 8(1):33–66. https://doi.org/10.1007/s10257-008-0108-y

    Article  Google Scholar 

  7. Becker J, Beverungen D, Matzner M, Müller O, Pöppelbuß J (2011a) Design science in service research: a framework-based review of IT artifacts in Germany. In: Jain H, Sinha AP, Vitharana P (eds) Proceedings of the 6th international conference on design science research in information systems and technology, vol 6629. Springer, Heidelberg, pp 366–375

  8. Becker J, Beverungen D, Knackstedt R, Müller O (2011b) Pricing of value bundles: a multi-perspective decision support approach. Enterp Model Inf Syst Archit 6(2):54–69

    Google Scholar 

  9. Beverungen D, Lüttenberg H, Wolf V (2017) Recombinant service system engineering. In: Proceedings of the 13th international conference on Wirtschaftsinformatik, St. Gallen, pp 136–150

  10. Böhmann T, Langer P, Schermann M (2008) Systematische Überführung von kundenspezifischen IT-Lösungen in integrierte Produkt-Dienstleistungsbausteine mit der SCORE-Methode. Wirtschaftsinformatik 50(3):196–207. https://doi.org/10.1365/s11576-008-0047-8

    Article  Google Scholar 

  11. Böhmann T, Leimeister JM, Möslein K (2014) Service systems engineering: a field for future information systems research. Bus Inf Syst Eng 6(2):73–79. https://doi.org/10.1007/s12599-014-0314-8

    Article  Google Scholar 

  12. Botta C (2007) Rahmenkonzept zur Entwicklung von product-service systems: product-service systems engineering. Zugl.: Saarbrücken, Univ., diss., 2006, Eul, Lohmar

  13. Breiman L (1984) Classification and regression trees. Chapman & Hall/CRC, New York

    Google Scholar 

  14. Brynjolfsson E, McAfee A (2014) Second machine age: work, progress, and prosperity in a time of brilliant technologies. Norton & Company, New York

    Google Scholar 

  15. Bullinger H-J, Schreiner P (2006) Service Engineering: Ein Rahmenkonzept für die systematische Entwicklung von Dienstleistungen. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Heidelberg, pp 53–84

    Google Scholar 

  16. Cardoso J, Voigt K, Winkler M (2008) Service engineering for the internet of services. In: Proceedings on the international conference on enterprise information systems. Springer, Heidelberg, pp 15–27

  17. Cavalieri S, Pezzotta G (2012) Product-service systems engineering: state of the art and research challenges. Comput Ind 63(4):278–288. https://doi.org/10.1016/j.compind.2012.02.006

    Article  Google Scholar 

  18. Cecere G, Ozman M (2014) Innovation, recombination and technological proximity. J Knowl Econ 5(3):646–667. https://doi.org/10.1007/s13132-014-0209-4

    Article  Google Scholar 

  19. Chandler JD, Lusch RF (2015) Service systems: a broadened framework and research agenda on value propositions, engagement, and service experience. J Serv Res 18(1):6–22. https://doi.org/10.1177/1094670514537709

    Article  Google Scholar 

  20. Constantin JA, Robert FL (1994) Understanding resource management. The Planning Forum, Oxford

    Google Scholar 

  21. Cooke P (2016) Four minutes to four years: the advantage of recombinant over specialized innovation – RIS3 versus ‘Smartspec’. Eur Plan Stud 24:1494–1510

    Article  Google Scholar 

  22. Dörbecker R, Böhmann T (2015a) FAMouS – framework for architecting modular services. In: Proceedings of the 36th international conference on information systems. Fort Worth, pp 1–18

  23. Dörbecker R, Böhmann T (2015b) Tackling the granularity problem in service modularization. In: Proceedings of the 21st American conference on information systems, Puerto Rico

  24. Dyer JH, Singh H (1998) The relational view: cooperative strategy and sources of inter-organizational competitive advantage. Acad Manag Rev 23(4):660–679

    Article  Google Scholar 

  25. Edvardsson B, Olsson J (1996) Key concepts for new service development. Serv Ind J 16(2):140–164. https://doi.org/10.1080/02642069600000019

    Article  Google Scholar 

  26. Erl T (2005) Service-oriented architecture (SOA): concepts, technology, and design. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Fähnrich K-P, Opitz M (2006) Service Engineering – Entwicklungspfad und Bild einer jungen Disziplin. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Heidelberg, pp 85–112

    Google Scholar 

  28. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  29. Fleming L (2001) Recombinant uncertainty in technological search. Manag Sci 47(1):117

    Article  Google Scholar 

  30. Gadrey J, Gallouj F, Weinstein O (1995) New modes of innovation. Int J Serv Ind Manag 6(3):4–16. https://doi.org/10.1108/09564239510091321

    Article  Google Scholar 

  31. Gallouj F, Weinstein O (1997) Innovation in services. Res Policy 26(4/5):537

    Article  Google Scholar 

  32. German Standards Institute (1998) DIN-Fachbericht 75 – Service Engineering. Beuth, Berlin

    Google Scholar 

  33. German Standards Institute (2008) Publicly Available Specification (PAS) 1082: Standardisierter Prozess zur Entwicklung industrieller Dienstleistungen in Netzwerken. Beuth, Berlin

    Google Scholar 

  34. German Standards Institute (2009) Publicly available specification (PAS) 1094: product-service systems – Value creation by integrating goods and services. Beuth, Berlin

    Google Scholar 

  35. Gilmore JH, Pine BJ II (1997) The four faces of mass customization. Harv Bus Rev 75(1):91–101

    Google Scholar 

  36. Gremyr I, Witell L, Löfberg N, Edvardsson B, Fundin A (2014) Understanding new service development and service innovation through innovation modes. J Bus Ind Mark 29(2):123–131

    Article  Google Scholar 

  37. Groba C, Cech S, Rosenthal F, Gossling A (2007) Architecture of a predictive maintenance framework. In: 6th International conference on computer information systems and industrial management applications, Minneapolis, pp 59–64

  38. Herrmann K, Klein R, The T-S (2006) Computer Aided Service Engineering – Konzeption eines Service Engineering Tools. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Heidelberg, pp 649–678

    Google Scholar 

  39. Jaschinski C (1998) Qualitätsorientiertes Redesign von Dienstleistungen. Zugl.: Aachen, Techn. Hochsch., Diss., 1998, Als Ms. gedr. Schriftenreihe Rationalisierung und Humanisierung, Bd. 14. Shaker, Aachen

  40. Johnson SP, Menor LJ, Roth AV, Chase RB (2000) A critical evaluation of the new service development process. In: Fitzsimmons JA, Fitzsimmons MJ (eds) new service development. Sage, Thousand Oaks, pp 1–32

    Google Scholar 

  41. Kersten W, Kern E-M, Zink T (2006) Collaborative service engineering. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Berlin, pp 341–357

    Google Scholar 

  42. Kim K-J, Lim C-H, Lee D-H, Lee J, Hong Y-S, Park K (2012) A concept generation support system for product-service system development. Serv Sci 4(4):349–364. https://doi.org/10.1287/serv.1120.0028

    Article  Google Scholar 

  43. Klein R (2007) Modellgestütztes service systems engineering: Theorie und Technik einer systemischen Entwicklung von Dienstleistungen. Zugl.: Saarbrücken, Univ., Diss., 2007, 1. Aufl. Schriften zur EDV-orientierten Betriebswirtschaft. Dt. Univ.-Verl., Wiesbaden

  44. KNIME.com AG (2017) KNIME – open for innovation. https://www.knime.org/. Accessed 5 Apr 2017

  45. Kokalitcheva K (2016) Uber now has 40 million monthly riders worldwide. http://fortune.com/2016/10/20/uber-app-riders/. Accessed 5 Apr 2017

  46. Kolko J (2015) Design thinking comes of age. Harv Bus Rev 93(Sept):66–71

  47. Krippendorff K (2013) Content analysis: an introduction to its methodology, 3rd edn. Sage, Thousand Oaks

    Google Scholar 

  48. Kunau G, Junginger M, Herrmann T, Krcmar H (2005) Ein Referenzmodell für das Service Engineering mit multiperspektivischem Ansatz. In: Herrmann T (ed) Konzepte für das Service-Engineering. Physica, Heidelberg, pp 187–216

    Google Scholar 

  49. Lindahl M, Sundin E, Sakao T, Shimomura Y (2006) An interactive design methodology for service engineering of functional sales concepts: a potential design for environment methodology. In: Proceedings of the 13th CIRP international conference on life cycle engineering, Leuven, pp 589–594

  50. Lovelock C, Gummesson E (2004) Whither services marketing? In search of a new paradigm and fresh perspectives. J Serv Res 7(1):20–41. https://doi.org/10.1177/1094670504266131

    Article  Google Scholar 

  51. Maglio PP, Vargo SL, Caswell N, Spohrer J (2009) The service system is the basic abstraction of service science. Inf Syst e Bus Manag 7(4):395–406. https://doi.org/10.1007/s10257-008-0105-1

    Article  Google Scholar 

  52. March ST, Smith GF (1995) Design and natural science research on information technology. Decis Support Syst 15(4):251–266

    Article  Google Scholar 

  53. Meiren T, Barth T (2002) Service Engineering in Unternehmen umsetzen - Leitfaden für die Entwicklung von Dienstleistungen. Fraunhofer-IRB, Stuttgart

  54. Meyer K, Böttcher M (2011) Entwicklungspfad Service Engineering 2.0: Neue Perspektiven für die Dienstleistungsentwicklung. Leipziger Beiträge zur Informatik, vol 29. Univ. Leipzig

  55. Microsoft Corporation (2017a) Learn about ASP.NET MVC. https://www.asp.net/mvc. Accessed 5 Apr 2017

  56. Microsoft Corporation (2017b) Welcome to.NET Core. https://www.microsoft.com/net/core/platform. Accessed 5 Apr 2017

  57. Mobley RK (2002) An introduction to predictive maintenance. Butterworth-Heinemann, Oxford

    Google Scholar 

  58. Morelli N (2003) Product-service systems, a perspective shift for designers: a case study: the design of a telecentre. Design Stud 24(1):73–99. https://doi.org/10.1016/S0142-694X(02)00029-7

    Article  Google Scholar 

  59. Müller P (2014) Integrated engineering of products and services. Zugl.: Berlin, Techn. Univ., Diss., 2013. Berichte aus dem Produktionstechnischen Zentrum Berlin. Fraunhofer, Stuttgart

  60. Osterwalder A, Pigneur Y (2010) Business model generation: a handbook for visionaries, game changers, and challengers. Wiley, Hoboken

    Google Scholar 

  61. Peltz C (2003) Web services orchestration and choreography. Comput 36(10):46–52

    Article  Google Scholar 

  62. Ramaswamy R (1996) Design and management of service processes: keeping customers for life. Engineering process improvement series. Addison-Wesley, Reading

  63. Razo-Zapata IS, Gordijn J (2009) Automatic service configuration under e3value approach. Doctoral Consortium CAiSE 479

  64. Scheuing EE, Johnson EM (1989) A proposed model for new service development. J Serv Mark 3(2):25–34. https://doi.org/10.1108/EUM0000000002484

    Article  Google Scholar 

  65. Schneider K, Scheer A-W (2003) Konzept zur systematischen und kundenorientierten Entwicklung von Dienstleistungen. Veröffentlichungen des Instituts für Wirtschaftsinformatik 175, Universität des Saarlandes, Saarbrücken

  66. Schreiner P, Klein L, Seemann C (2001) Die Dienstleistungen im Griff – erfolgreich gründen mit System. Fraunhofer-IRB, Stuttgart

    Google Scholar 

  67. Schwarz W (1997) Methodisches Konstruieren als Mittel zur systematischen Gestaltung von Dienstleistungen. Zugl.: Berlin, Techn. Univ., Diss., 1997. Berichte aus dem Produktionstechnischen Zentrum Berlin. IPK, Berlin

  68. Sein MK, Henfridsson O, Purao S, Rossi M, Lindgren R, Saunders C, Iivari J (2011) Action design research. MIS Q 35(1):37–56

    Article  Google Scholar 

  69. Senyard J, Baker T, Steffens P, Davidsson P (2014) Bricolage as a path to innovativeness for resource-constrained new firms. J Prod Innov Manag 31(2):211–230. https://doi.org/10.1111/jpim.12091

    Article  Google Scholar 

  70. Shostack LG, Kingman-Brundage J (1991) How to design a service. In: Congram CA, Friedman ML (eds) The AMA handbook of marketing for the service industries. AMACOM, New York, pp 243–261

    Google Scholar 

  71. Spohrer J, Maglio PP (2008) Fundamentals of service science. J Acad Mark Sci 36(1):18–20

    Article  Google Scholar 

  72. Spohrer J, Maglio PP, Bailey J, Gruhl D (2007) Steps toward a science of service systems. IEEE Comput 40(1):71–77

    Article  Google Scholar 

  73. Toivonen M, Tuominen T (2009) Emergence of innovations in services. Serv Ind J 29(7):887–902. https://doi.org/10.1080/02642060902749492

    Article  Google Scholar 

  74. Traverso P, Pistore M (2004) Automated composition of semantic web services into executable processes. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) The semantic web – ISWC 2004, vol 3298. Lecture notes in computer science. Springer, Heidelberg, pp 380–394

    Google Scholar 

  75. Tsur Y, Zemel A (2007) Towards endogenous recombinant growth. J Econ Dyn Control 31(11):3459–3477. https://doi.org/10.1016/j.jedc.2006.12.002

    Article  Google Scholar 

  76. Tukker A, Tischner U (2006) Product-services as a research field: past, present and future. Reflections from a decade of research. J Clean Prod 14(17):1552–1556

    Article  Google Scholar 

  77. Tuli KR, Kohli AK, Bharadwaj SG (2007) Rethinking customer solutions: from product bundles to relational processes. J Mark 71:1–17

    Article  Google Scholar 

  78. Uber Technologies Inc. (2017) Uber website. https://www.uber.com/de/. Accessed 5 Apr 2017

  79. Vargo SL, Lusch RF (2004) Evolving to a new dominant logic for marketing. J Mark 68(1):1–17. https://doi.org/10.1509/jmkg.68.1.1.24036

    Article  Google Scholar 

  80. Vargo SL, Lusch RF (2008a) Service-dominant logic: continuing the evolution. J Acad Mark Sci 36(1):1–10. https://doi.org/10.1007/s11747-007-0069-6

    Article  Google Scholar 

  81. Vargo SL, Lusch RF (2008b) Why “service”? J Acad Mark Sci 36(1):25–38. https://doi.org/10.1007/s11747-007-0068-7

    Article  Google Scholar 

  82. Vargo SL, Lusch RF, Akaka MA (2010) Advancing service science with service-dominant logic. In: Handbook of service science. Springer, Boston, pp 133–156

  83. Vasantha A, Vijaykumar G, Hussain R, Roy R, Tiwari A, Evans S (2011) A framework for designing product-service systems. In: Proceedings of the 18th international conference on engineering design, Copenhagen

  84. VDI 2221 (1993) Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Verein Deutscher Ingenieure, Berlin

    Google Scholar 

  85. Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Q 26(2):13–23

    Google Scholar 

  86. Wirth M, Friesike S, Flath C, Thiesse F (2015) Patterns of remixes or where do innovations come from: evidence from 3D printing. In: Proceedings of the 23rd European conference on information systems, Münster

  87. Yadav MS (2010) The decline of conceptual articles and implications for knowledge development. J Mark 74(1):1–19

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. Daniel Beverungen.

Additional information

Accepted after one revision by Prof. Dr. Zdravkovic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 134 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beverungen, D., Lüttenberg, H. & Wolf, V. Recombinant Service Systems Engineering. Bus Inf Syst Eng 60, 377–391 (2018). https://doi.org/10.1007/s12599-018-0526-4

Download citation

Keywords

  • Service engineering
  • Recombinant innovation
  • (Product-)service system
  • Design science research
  • New service development