Business & Information Systems Engineering

, Volume 60, Issue 5, pp 377–391 | Cite as

Recombinant Service Systems Engineering

  • Daniel BeverungenEmail author
  • Hedda Lüttenberg
  • Verena Wolf
Research Paper


Although many methods have been proposed for engineering service systems and customer solutions, most of these approaches give little consideration to recombinant service innovation. Recombinant innovation refers to reusing and integrating resources that were previously unconnected. In an age of networked products and data, we can expect that many service innovations will be based on adding, dissociating, and associating existing value propositions by accessing internal and external resources instead of designing them from scratch. The purpose of this paper is to identify if current service engineering approaches account for the mechanisms of recombinant innovation and to design a method for recombinant service systems engineering. In a conceptual analysis of 24 service engineering methods, the study identified that most methods (1) focus on designing value propositions instead of service systems, (2) view service independent of physical goods, (3) are either linear or iterative instead of agile, and (4) do not sufficiently address the mechanisms of recombinant innovation. The paper discusses how these deficiencies can be remedied and designs a revised service systems engineering approach that reorganizes service engineering processes according to four design principles. The method is demonstrated with the recombinant design of a service system for predictive maintenance of agricultural machines.


Service engineering Recombinant innovation (Product-)service system Design science research New service development 

Supplementary material

12599_2018_526_MOESM1_ESM.pdf (135 kb)
Supplementary material 1 (PDF 134 kb)


  1. Antonelli C, Krafft J, Quatraro F (2010) Recombinant knowledge and growth: the case of ICTs. Struct Chang Econ Dyn 21(1):50–69. CrossRefGoogle Scholar
  2. Backhaus K, Becker J, Beverungen D, Frohs M, Knackstedt R, Müller O, Steiner M, Weddeling M (2010) Vermarktung hybrider Leistungsbündel: Das ServPay-Konzept. Springer, HeidelbergGoogle Scholar
  3. Baida Z (2006) Software-aided service bundling: intelligent methods and tools for graphical service modelling. Doctoral dissertation, Vrije Universiteit AmsterdamGoogle Scholar
  4. Becker J, Beverungen D, Knackstedt R, Matzner M (2009a) Configurative service engineering – a rule-based configuration approach for versatile service processes in corrective maintenance. In: Proceedings of the 42nd annual Hawaii international conference on system sciences. Big Island, Hawaii, pp 1–10Google Scholar
  5. Becker J, Beverungen D, Knackstedt R, Müller O (2009b) Model-based decision support for the customer-specific configuration of value bundles. Enterp Model Inf Syst Archit 4(1):26–38Google Scholar
  6. Becker J, Beverungen D, Knackstedt R (2009c) The challenge of conceptual modeling for product–service systems: status-quo and perspectives for reference models and modeling languages. Inf Syst e Bus Manag 8(1):33–66. CrossRefGoogle Scholar
  7. Becker J, Beverungen D, Matzner M, Müller O, Pöppelbuß J (2011a) Design science in service research: a framework-based review of IT artifacts in Germany. In: Jain H, Sinha AP, Vitharana P (eds) Proceedings of the 6th international conference on design science research in information systems and technology, vol 6629. Springer, Heidelberg, pp 366–375Google Scholar
  8. Becker J, Beverungen D, Knackstedt R, Müller O (2011b) Pricing of value bundles: a multi-perspective decision support approach. Enterp Model Inf Syst Archit 6(2):54–69Google Scholar
  9. Beverungen D, Lüttenberg H, Wolf V (2017) Recombinant service system engineering. In: Proceedings of the 13th international conference on Wirtschaftsinformatik, St. Gallen, pp 136–150Google Scholar
  10. Böhmann T, Langer P, Schermann M (2008) Systematische Überführung von kundenspezifischen IT-Lösungen in integrierte Produkt-Dienstleistungsbausteine mit der SCORE-Methode. Wirtschaftsinformatik 50(3):196–207. CrossRefGoogle Scholar
  11. Böhmann T, Leimeister JM, Möslein K (2014) Service systems engineering: a field for future information systems research. Bus Inf Syst Eng 6(2):73–79. CrossRefGoogle Scholar
  12. Botta C (2007) Rahmenkonzept zur Entwicklung von product-service systems: product-service systems engineering. Zugl.: Saarbrücken, Univ., diss., 2006, Eul, LohmarGoogle Scholar
  13. Breiman L (1984) Classification and regression trees. Chapman & Hall/CRC, New YorkGoogle Scholar
  14. Brynjolfsson E, McAfee A (2014) Second machine age: work, progress, and prosperity in a time of brilliant technologies. Norton & Company, New YorkGoogle Scholar
  15. Bullinger H-J, Schreiner P (2006) Service Engineering: Ein Rahmenkonzept für die systematische Entwicklung von Dienstleistungen. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Heidelberg, pp 53–84CrossRefGoogle Scholar
  16. Cardoso J, Voigt K, Winkler M (2008) Service engineering for the internet of services. In: Proceedings on the international conference on enterprise information systems. Springer, Heidelberg, pp 15–27Google Scholar
  17. Cavalieri S, Pezzotta G (2012) Product-service systems engineering: state of the art and research challenges. Comput Ind 63(4):278–288. CrossRefGoogle Scholar
  18. Cecere G, Ozman M (2014) Innovation, recombination and technological proximity. J Knowl Econ 5(3):646–667. CrossRefGoogle Scholar
  19. Chandler JD, Lusch RF (2015) Service systems: a broadened framework and research agenda on value propositions, engagement, and service experience. J Serv Res 18(1):6–22. CrossRefGoogle Scholar
  20. Constantin JA, Robert FL (1994) Understanding resource management. The Planning Forum, OxfordGoogle Scholar
  21. Cooke P (2016) Four minutes to four years: the advantage of recombinant over specialized innovation – RIS3 versus ‘Smartspec’. Eur Plan Stud 24:1494–1510CrossRefGoogle Scholar
  22. Dörbecker R, Böhmann T (2015a) FAMouS – framework for architecting modular services. In: Proceedings of the 36th international conference on information systems. Fort Worth, pp 1–18Google Scholar
  23. Dörbecker R, Böhmann T (2015b) Tackling the granularity problem in service modularization. In: Proceedings of the 21st American conference on information systems, Puerto RicoGoogle Scholar
  24. Dyer JH, Singh H (1998) The relational view: cooperative strategy and sources of inter-organizational competitive advantage. Acad Manag Rev 23(4):660–679CrossRefGoogle Scholar
  25. Edvardsson B, Olsson J (1996) Key concepts for new service development. Serv Ind J 16(2):140–164. CrossRefGoogle Scholar
  26. Erl T (2005) Service-oriented architecture (SOA): concepts, technology, and design. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. Fähnrich K-P, Opitz M (2006) Service Engineering – Entwicklungspfad und Bild einer jungen Disziplin. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Heidelberg, pp 85–112CrossRefGoogle Scholar
  28. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874. CrossRefGoogle Scholar
  29. Fleming L (2001) Recombinant uncertainty in technological search. Manag Sci 47(1):117CrossRefGoogle Scholar
  30. Gadrey J, Gallouj F, Weinstein O (1995) New modes of innovation. Int J Serv Ind Manag 6(3):4–16. CrossRefGoogle Scholar
  31. Gallouj F, Weinstein O (1997) Innovation in services. Res Policy 26(4/5):537CrossRefGoogle Scholar
  32. German Standards Institute (1998) DIN-Fachbericht 75 – Service Engineering. Beuth, BerlinGoogle Scholar
  33. German Standards Institute (2008) Publicly Available Specification (PAS) 1082: Standardisierter Prozess zur Entwicklung industrieller Dienstleistungen in Netzwerken. Beuth, BerlinGoogle Scholar
  34. German Standards Institute (2009) Publicly available specification (PAS) 1094: product-service systems – Value creation by integrating goods and services. Beuth, BerlinGoogle Scholar
  35. Gilmore JH, Pine BJ II (1997) The four faces of mass customization. Harv Bus Rev 75(1):91–101Google Scholar
  36. Gremyr I, Witell L, Löfberg N, Edvardsson B, Fundin A (2014) Understanding new service development and service innovation through innovation modes. J Bus Ind Mark 29(2):123–131CrossRefGoogle Scholar
  37. Groba C, Cech S, Rosenthal F, Gossling A (2007) Architecture of a predictive maintenance framework. In: 6th International conference on computer information systems and industrial management applications, Minneapolis, pp 59–64Google Scholar
  38. Herrmann K, Klein R, The T-S (2006) Computer Aided Service Engineering – Konzeption eines Service Engineering Tools. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Heidelberg, pp 649–678CrossRefGoogle Scholar
  39. Jaschinski C (1998) Qualitätsorientiertes Redesign von Dienstleistungen. Zugl.: Aachen, Techn. Hochsch., Diss., 1998, Als Ms. gedr. Schriftenreihe Rationalisierung und Humanisierung, Bd. 14. Shaker, AachenGoogle Scholar
  40. Johnson SP, Menor LJ, Roth AV, Chase RB (2000) A critical evaluation of the new service development process. In: Fitzsimmons JA, Fitzsimmons MJ (eds) new service development. Sage, Thousand Oaks, pp 1–32Google Scholar
  41. Kersten W, Kern E-M, Zink T (2006) Collaborative service engineering. In: Bullinger H-J, Scheer A-W (eds) Service engineering, 2nd edn. Springer, Berlin, pp 341–357CrossRefGoogle Scholar
  42. Kim K-J, Lim C-H, Lee D-H, Lee J, Hong Y-S, Park K (2012) A concept generation support system for product-service system development. Serv Sci 4(4):349–364. CrossRefGoogle Scholar
  43. Klein R (2007) Modellgestütztes service systems engineering: Theorie und Technik einer systemischen Entwicklung von Dienstleistungen. Zugl.: Saarbrücken, Univ., Diss., 2007, 1. Aufl. Schriften zur EDV-orientierten Betriebswirtschaft. Dt. Univ.-Verl., WiesbadenGoogle Scholar
  44. AG (2017) KNIME – open for innovation. Accessed 5 Apr 2017
  45. Kokalitcheva K (2016) Uber now has 40 million monthly riders worldwide. Accessed 5 Apr 2017
  46. Kolko J (2015) Design thinking comes of age. Harv Bus Rev 93(Sept):66–71Google Scholar
  47. Krippendorff K (2013) Content analysis: an introduction to its methodology, 3rd edn. Sage, Thousand OaksGoogle Scholar
  48. Kunau G, Junginger M, Herrmann T, Krcmar H (2005) Ein Referenzmodell für das Service Engineering mit multiperspektivischem Ansatz. In: Herrmann T (ed) Konzepte für das Service-Engineering. Physica, Heidelberg, pp 187–216CrossRefGoogle Scholar
  49. Lindahl M, Sundin E, Sakao T, Shimomura Y (2006) An interactive design methodology for service engineering of functional sales concepts: a potential design for environment methodology. In: Proceedings of the 13th CIRP international conference on life cycle engineering, Leuven, pp 589–594Google Scholar
  50. Lovelock C, Gummesson E (2004) Whither services marketing? In search of a new paradigm and fresh perspectives. J Serv Res 7(1):20–41. CrossRefGoogle Scholar
  51. Maglio PP, Vargo SL, Caswell N, Spohrer J (2009) The service system is the basic abstraction of service science. Inf Syst e Bus Manag 7(4):395–406. CrossRefGoogle Scholar
  52. March ST, Smith GF (1995) Design and natural science research on information technology. Decis Support Syst 15(4):251–266CrossRefGoogle Scholar
  53. Meiren T, Barth T (2002) Service Engineering in Unternehmen umsetzen - Leitfaden für die Entwicklung von Dienstleistungen. Fraunhofer-IRB, StuttgartGoogle Scholar
  54. Meyer K, Böttcher M (2011) Entwicklungspfad Service Engineering 2.0: Neue Perspektiven für die Dienstleistungsentwicklung. Leipziger Beiträge zur Informatik, vol 29. Univ. LeipzigGoogle Scholar
  55. Microsoft Corporation (2017a) Learn about ASP.NET MVC. Accessed 5 Apr 2017
  56. Microsoft Corporation (2017b) Welcome to.NET Core. Accessed 5 Apr 2017
  57. Mobley RK (2002) An introduction to predictive maintenance. Butterworth-Heinemann, OxfordGoogle Scholar
  58. Morelli N (2003) Product-service systems, a perspective shift for designers: a case study: the design of a telecentre. Design Stud 24(1):73–99. CrossRefGoogle Scholar
  59. Müller P (2014) Integrated engineering of products and services. Zugl.: Berlin, Techn. Univ., Diss., 2013. Berichte aus dem Produktionstechnischen Zentrum Berlin. Fraunhofer, StuttgartGoogle Scholar
  60. Osterwalder A, Pigneur Y (2010) Business model generation: a handbook for visionaries, game changers, and challengers. Wiley, HobokenGoogle Scholar
  61. Peltz C (2003) Web services orchestration and choreography. Comput 36(10):46–52CrossRefGoogle Scholar
  62. Ramaswamy R (1996) Design and management of service processes: keeping customers for life. Engineering process improvement series. Addison-Wesley, ReadingGoogle Scholar
  63. Razo-Zapata IS, Gordijn J (2009) Automatic service configuration under e3value approach. Doctoral Consortium CAiSE 479Google Scholar
  64. Scheuing EE, Johnson EM (1989) A proposed model for new service development. J Serv Mark 3(2):25–34. CrossRefGoogle Scholar
  65. Schneider K, Scheer A-W (2003) Konzept zur systematischen und kundenorientierten Entwicklung von Dienstleistungen. Veröffentlichungen des Instituts für Wirtschaftsinformatik 175, Universität des Saarlandes, SaarbrückenGoogle Scholar
  66. Schreiner P, Klein L, Seemann C (2001) Die Dienstleistungen im Griff – erfolgreich gründen mit System. Fraunhofer-IRB, StuttgartGoogle Scholar
  67. Schwarz W (1997) Methodisches Konstruieren als Mittel zur systematischen Gestaltung von Dienstleistungen. Zugl.: Berlin, Techn. Univ., Diss., 1997. Berichte aus dem Produktionstechnischen Zentrum Berlin. IPK, BerlinGoogle Scholar
  68. Sein MK, Henfridsson O, Purao S, Rossi M, Lindgren R, Saunders C, Iivari J (2011) Action design research. MIS Q 35(1):37–56CrossRefGoogle Scholar
  69. Senyard J, Baker T, Steffens P, Davidsson P (2014) Bricolage as a path to innovativeness for resource-constrained new firms. J Prod Innov Manag 31(2):211–230. CrossRefGoogle Scholar
  70. Shostack LG, Kingman-Brundage J (1991) How to design a service. In: Congram CA, Friedman ML (eds) The AMA handbook of marketing for the service industries. AMACOM, New York, pp 243–261Google Scholar
  71. Spohrer J, Maglio PP (2008) Fundamentals of service science. J Acad Mark Sci 36(1):18–20CrossRefGoogle Scholar
  72. Spohrer J, Maglio PP, Bailey J, Gruhl D (2007) Steps toward a science of service systems. IEEE Comput 40(1):71–77CrossRefGoogle Scholar
  73. Toivonen M, Tuominen T (2009) Emergence of innovations in services. Serv Ind J 29(7):887–902. CrossRefGoogle Scholar
  74. Traverso P, Pistore M (2004) Automated composition of semantic web services into executable processes. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) The semantic web – ISWC 2004, vol 3298. Lecture notes in computer science. Springer, Heidelberg, pp 380–394CrossRefGoogle Scholar
  75. Tsur Y, Zemel A (2007) Towards endogenous recombinant growth. J Econ Dyn Control 31(11):3459–3477. CrossRefGoogle Scholar
  76. Tukker A, Tischner U (2006) Product-services as a research field: past, present and future. Reflections from a decade of research. J Clean Prod 14(17):1552–1556CrossRefGoogle Scholar
  77. Tuli KR, Kohli AK, Bharadwaj SG (2007) Rethinking customer solutions: from product bundles to relational processes. J Mark 71:1–17CrossRefGoogle Scholar
  78. Uber Technologies Inc. (2017) Uber website. Accessed 5 Apr 2017
  79. Vargo SL, Lusch RF (2004) Evolving to a new dominant logic for marketing. J Mark 68(1):1–17. CrossRefGoogle Scholar
  80. Vargo SL, Lusch RF (2008a) Service-dominant logic: continuing the evolution. J Acad Mark Sci 36(1):1–10. CrossRefGoogle Scholar
  81. Vargo SL, Lusch RF (2008b) Why “service”? J Acad Mark Sci 36(1):25–38. CrossRefGoogle Scholar
  82. Vargo SL, Lusch RF, Akaka MA (2010) Advancing service science with service-dominant logic. In: Handbook of service science. Springer, Boston, pp 133–156Google Scholar
  83. Vasantha A, Vijaykumar G, Hussain R, Roy R, Tiwari A, Evans S (2011) A framework for designing product-service systems. In: Proceedings of the 18th international conference on engineering design, CopenhagenGoogle Scholar
  84. VDI 2221 (1993) Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Verein Deutscher Ingenieure, BerlinGoogle Scholar
  85. Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Q 26(2):13–23Google Scholar
  86. Wirth M, Friesike S, Flath C, Thiesse F (2015) Patterns of remixes or where do innovations come from: evidence from 3D printing. In: Proceedings of the 23rd European conference on information systems, MünsterGoogle Scholar
  87. Yadav MS (2010) The decline of conceptual articles and implications for knowledge development. J Mark 74(1):1–19CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Beverungen
    • 1
    Email author
  • Hedda Lüttenberg
    • 1
  • Verena Wolf
    • 1
  1. 1.Paderborn UniversityPaderbornGermany

Personalised recommendations