Advertisement

Business & Information Systems Engineering

, Volume 59, Issue 5, pp 361–373 | Cite as

Towards a User-Centered Feedback Design for Smart Meter Interfaces to Support Efficient Energy-Use Choices

A Design Science Approach
  • Anders Dalén
  • Jan Krämer
Research Paper

Abstract

Based on interviews of users’ experience with current smart-meter technologies the authors propose, implement and evaluate a user-centered design of an energy-use information system that assists private households in making efficient energy consumption decisions. Instead of providing disaggregated data, the envisioned system automatically calculates the monetary savings from replacing an appliance or by changing the operational behavior of an appliance. The information provided is personalized with respect to appliance use and also comprises information from external databases. A prototype is implemented and evaluated in a use case with white goods household appliances. The study concludes with directions for further interactivity improvements and research into the structures of an openly shared appliance database.

Keywords

Smart metering Design science User-centered design Green IS 

Notes

Acknowledgements

The authors would like to express their gratitude to Michael Schilling and Henning Quellenberg for their research assistance during the development of this study.

References

  1. Abrahamse W, Steg L, Vlek C, Rothengatter T (2005) A review of intervention studies aimed at household energy conservation. J Environ Psychol 25(3):273–291CrossRefGoogle Scholar
  2. Abrahamse W, Steg L, Vlek C, Rothengatter T (2007) The effect of tailored information, goal setting, and tailored feedback on household energy use, energy-related behaviors, and behavioral antecedents. J Environ Psychol 27(4):265–276CrossRefGoogle Scholar
  3. AG Energiebilanzen (2014) Auswertungstabellen zur Energiebilanz für die Bundesrepublik Deutschland 1990 bis 2011. http://www.ag-energiebilanzen.de/index.php?article_id=10. Accessed 21 July 2016
  4. Allcott H, Mullainathan S (2010) Behavior and energy policy. Science 327(5970):1204–1205CrossRefGoogle Scholar
  5. Anderson W, White V (2009) Exploring consumer preferences for home energy display functionality. Tech. rep., Centre for Sustainable Energy, Report to the Energy Savings TrustGoogle Scholar
  6. Baskerville R, Pries-Heje J (2010) Explanatory design theory. Bus Inf Syst Eng 2(5):271–282. doi: 10.1007/s12599-010-0118-4 CrossRefGoogle Scholar
  7. Benders RM, Kok R, Moll HC, Wiersma G, Noorman KJ (2006) New approaches for household energy conservation in search of personal household energy budgets and energy reduction options. Energy Policy 34(18):3612–3622CrossRefGoogle Scholar
  8. Bhattacherjee A, Sanford C (2006) Influence processes for information technology acceptance: an elaboration likelihood model. MIS Q 30(4):805–825Google Scholar
  9. Brocke J, Loos P, Seidel S, Watson RT (2013) Green IS. Bus Inf Syst Eng 5(5):295–297. doi: 10.1007/s12599-013-0288-y CrossRefGoogle Scholar
  10. Corbin J, Strauss A (2008) Basics of qualitative research: techniques and procedures for developing grounded theory. Sage, Newbury ParkCrossRefGoogle Scholar
  11. Costanza E, Ramchurn SD, Jennings NR (2012) Understanding domestic energy consumption through interactive visualisation. In: Proceedings of the 2012 ACM conference on ubiquitous computing—ubicomp ’12. ACM Press, New York, p 216. doi: 10.1145/2370216.2370251
  12. Darby S (2008) Energy feedback in buildings: improving the infrastructure for demand reduction. Build Res Inf 36(5):499–508. doi: 10.1080/09613210802028428 CrossRefGoogle Scholar
  13. Darby S (2010) Smart metering: what potential for householder engagement? Build Res Inf 38(5):442–457CrossRefGoogle Scholar
  14. Darby S, Anderson W, White V (2011) Large-scale testing of new technology: some lessons from the UK smart metering and feedback trials. In: European council for an energy-efficient economy, Summer Study, pp 1–7Google Scholar
  15. Dietz T, Gardner GT, Gilligan J, Stern PC, Vandenbergh MP (2009) Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc Natl Acad Sci 106(44):18,452–18,456CrossRefGoogle Scholar
  16. Eekels J, Roozenburg N (1991) A methodological comparison of the structures of scientific research and engineering design: their similarities and differences. Design Stud 12(4):197–203. doi: 10.1016/0142-694X(91)90031-Q CrossRefGoogle Scholar
  17. Ehrhardt-Martinez K, Donnelly KA, Laitner S (2010) Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. In: American Council for an Energy-Efficient Economy, Washington DCGoogle Scholar
  18. European Commission (2006) Action plan for energy efficiency: raising the potential. COM(2006)545 finalGoogle Scholar
  19. Fischer C (2008) Feedback on household electricity consumption: a tool for saving energy? Energy Effic 1(1):79–104CrossRefGoogle Scholar
  20. Fitzpatrick G, Smith G (2009) Technology-enabled feedback on domestic energy consumption: articulating a set of design concerns. IEEE Pervasive Comput 8(1):37–44. doi: 10.1109/MPRV.2009.17 CrossRefGoogle Scholar
  21. Frieden BJ, Baker K (1983) The market needs help: the disappointing record of home energy conservation. J Policy Anal Manag 2(3):432–448CrossRefGoogle Scholar
  22. Goes PB (2014) Editor’s comments: design science research in top information systems journals. MIS Q 38(1):iii–viii. http://dl.acm.org/citation.cfm?id=2600518.2600519. Accessed 27 May 2017
  23. Gregor S, Hevner AR (2013) Positioning and presenting design science research for maximum impact. MIS Q 37(2):337–356. http://dl.acm.org/citation.cfm?id=2535658.2535660
  24. Gregor S, Jones D (2007) The anatomy of a design theory. J Assoc Inf Syst 8(5):312–335Google Scholar
  25. Grønhøj A, Thøgersen J (2011) Feedback on household electricity consumption: learning and social influence processes. Int J Consum Stud 35(2):138–145CrossRefGoogle Scholar
  26. Gutberlet KL (2008) Energieeffizienz im Haushalt. GFK-Tagung, Nuremberg. http://www.gfk-verein.org/veranstaltungen/gfk-tagung-2008/vortrag-2. Accessed 4 July 2008
  27. Han Q, Nieuwenhijsen I, de Vries B, Blokhuis E, Schaefer W (2013) Intervention strategy to stimulate energy-saving behavior of local residents. Energy Policy 52:706–715CrossRefGoogle Scholar
  28. Hargreaves T, Nye M, Burgess J (2013) Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 52:126–134. doi: 10.1016/j.enpol.2012.03.027 CrossRefGoogle Scholar
  29. Hart G (1992) Nonintrusive appliance load monitoring. Proc IEEE 80(12):1870–1891. doi: 10.1109/5.192069 CrossRefGoogle Scholar
  30. Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Q 28(1):75–105Google Scholar
  31. Honebein PC, Cammarano RF, Donnelly KA (2009) Will smart meters ripen or rot? Five first principles for embracing customers as co-creators of value. Electric J 22(5):39–44CrossRefGoogle Scholar
  32. Hopf K, Sodenkamp M, Kozlovkiy I, Staake T (2016) Feature extraction and filtering for household classification based on smart electricity meter data. Comput Sci Res Dev 31(3):141–148CrossRefGoogle Scholar
  33. ISO (2010) ISO 9241–210:2010: Ergonomics of human-system interaction—Part 210: human-centred design for interactive systems. Tech. rep., International Organization for Standardization, GenevaGoogle Scholar
  34. Kamb ML, Rhodes F, Hoxworth T, Rogers J, Lentz A, Kent C, MacGowen R, Peterman TA (1998) What about money? Effect of small monetary incentives on enrollment, retention, and motivation to change behaviour in an HIV/STD prevention counselling intervention. The Project RESPECT Study Group. Sex Transm Infect 74(4):253–255CrossRefGoogle Scholar
  35. Kuckart U, Rädiker S, Rheingans-Heintze A (2006) Umweltbewusstsein in Deutschland 2006—Ergebnisse einer repräsentativen Bevölkerungsumfrage. Tech. rep., Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU)Google Scholar
  36. Langgassner W (2001) Energieeffizienz elektrischer Antriebe in Haushaltsgeräten. E und M, Energie-und-Management-Verl.-Ges, HerrschingGoogle Scholar
  37. Liang J, Ng SKK, Kendall G, Cheng JWM (2010) Load signature study part II: disaggregation framework, simulation, and applications. IEEE Trans Power Deliv 25(2):561–569. doi: 10.1109/TPWRD.2009.2033800 CrossRefGoogle Scholar
  38. Loock CM, Staake T, Thiesse F (2013) Motivating energy-efficient behavior with green is: an investigation of goal setting and the role of defaults. MIS Q 37(4):1313–1332CrossRefGoogle Scholar
  39. Lossin F, Loder A, Staake T (2016) Energy informatics for behavioral change. Comput Sci Res Dev 31(3):149–155. doi: 10.1007/s00450-014-0295-3 CrossRefGoogle Scholar
  40. Mattle P, Aigner M, Schmautzer E, Fickert L (2011) Smart Plug—Konzept für ein intelligentes Lastmanagementsystem für Einzelverbraucher. In: Energieversorgung 2011: Märkte um des Marktes Willen?, TU Wien. Internationale Energiewirtschaftstagung. Institut für Energiesysteme und Elektrische Antriebe, Vienna, pp 96–97, 7Google Scholar
  41. McMakin AH, Malone EL, Lundgren RE (2002) Motivating residents to conserve energy without financial incentives. Environ Behav 34(6):848–863CrossRefGoogle Scholar
  42. Nilsson A, Bergstad CJ, Thuvander L, Andersson D, Andersson K, Meiling P (2014) Effects of continuous feedback on households electricity consumption: potentials and barriers. Appl Energy 122:17–23CrossRefGoogle Scholar
  43. Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A design science research methodology for information systems research. J Manag Inf Syst 24(3):45–77CrossRefGoogle Scholar
  44. Petersen JE, Shunturov V, Janda K, Platt G, Weinberger K (2007) Dormitory residents reduce electricity consumption when exposed to real-time visual feedback and incentives. Int J Sustain Higher Educ 8(1):16–33. doi: 10.1108/14676370710717562 CrossRefGoogle Scholar
  45. Poortinga W, Steg L, Vlek C, Wiersma G (2003) Household preferences for energy-saving measures: a conjoint analysis. J Econ Psychol 24(1):49–64CrossRefGoogle Scholar
  46. Pullinger M, Lovell H, Webb J (2014) Influencing household energy practices: a critical review of UK smart metering standards and commercial feedback devices. Technol Anal Strateg Manag 26(10):1144–1162CrossRefGoogle Scholar
  47. Ritchie JRB, McDougall GHG (1985) Designing and marketing consumer energy conservation policies and programs: implications from a decade of research. J Public Policy Mark 4(1):14–32Google Scholar
  48. Rüdenauer I, Eberle U, Grieß hammer R (2006) Ökobilanz und Lebenszykluskostenrechnung Wäschewaschen. Tech. rep., Öko-Institut e.V., Freiburg/Hamburg. http://www.oeko.de/oekodoc/289/2006-008-de.pdf. Accessed 27 May 2017
  49. Schwartz T, Denef S, Stevens G, Ramirez L, Wulf V (2013) Cultivating energy literacy. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI ’13. ACM Press, New York, p 1193. doi: 10.1145/2470654.2466154
  50. Simmhan Y, Aman S, Cao B, Giakkoupis M, Kumbhare A, Zhou Q, Paul D, Fern C, Sharma A, Prasanna V (2011) An informatics approach to demand response optimization in smart grids. Nat Gas 31:60Google Scholar
  51. Steg L (2008) Promoting household energy conservation. Energy Policy 36(12):4449–4453CrossRefGoogle Scholar
  52. Strengers Y (2011) Designing eco-feedback systems for everyday life. In: Proceedings of the 2011 annual conference on human factors in computing systems—CHI ’11. ACM Press, New York, pp 2135–2144. doi: 10.1145/1978942.1979252
  53. Thuvander L, Meiling P, Andersson K (2012) Energivisualisering via display: Förändras beteendet när hyresgästerna har möjlighet att följa sin elförbrukning? Tech. rep., Chalmers University of Technology, GöteborgGoogle Scholar
  54. Umweltbundesamt (2012) Ausstattung privater Haushalte mit langlebigen Gebrauchsgütern. Tech. rep., Daten zur Umwelt. http://www.umweltbundesamt-daten-zur-umwelt.de/umweltdaten/public/theme.do?nodeIdent=3535. Accessed 15 Mar 2013
  55. Urquhart C, Lehmann H, Myers MD (2009) Putting the theory back into grounded theory: guidelines for grounded theory studies in information systems. Inf Syst J 20(4):357–381. doi: 10.1111/j.1365-2575.2009.00328.x CrossRefGoogle Scholar
  56. Van Dam S, Bakker C, Van Hal J (2010) Home energy monitors: impact over the medium-term. Build Res Inf 38(5):458–469CrossRefGoogle Scholar
  57. Van Dam S, Bakker C, Van Hal J (2012) Insights into the design, use and implementation of home energy management systems. J Design Res 10(1–2):86–101CrossRefGoogle Scholar
  58. Vassileva I, Odlare M, Wallin F, Dahlquist E (2012) The impact of consumers feedback preferences on domestic electricity consumption. Appl Energy 93:575–582CrossRefGoogle Scholar
  59. Vassileva I, Dahlquist E, Wallin F, Campillo J (2013) Energy consumption feedback devices impact evaluation on domestic energy use. Appl Energy 106:314–320CrossRefGoogle Scholar
  60. Wallenborn G, Orsini M, Vanhaverbeke J (2011) Household appropriation of electricity monitors. Int J Consum Stud 35(2):146–152. doi: 10.1111/j.1470-6431.2010.00985.x CrossRefGoogle Scholar
  61. Walls JG, Widmeyer GR, El Sawy OA (1992) Building an information system design theory for vigilant EIS. Inf Syst Res 3(1):36–59. doi: 10.1287/isre.3.1.36 CrossRefGoogle Scholar
  62. Weiss M (2010) emeter: Stromverbrauchsfeedback auf basis eines pervasive energy monitoring systems, Doktoranden-Workshop Energieinformatik 2010. https://www.vs.inf.ethz.ch/publ/papers/weismark-emeter-2010.pdf. Accessed 16 July 2016
  63. Weiss M, Staake T, Mattern F, Fleisch E (2012) PowerPedia: changing energy usage with the help of a community-based smartphone application. Pers Ubiquitous Comput 16(6):655–664CrossRefGoogle Scholar
  64. White AL (1993) Accounting for pollution prevention. EPA J 19(3):23–25Google Scholar
  65. Zhou K, Yang S (2016) Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew Sustain Energy Rev 56:810–819CrossRefGoogle Scholar
  66. Zufferey D, Gisler C, Khaled OA, Hennebert J (2012) Machine learning approaches for electric appliance classification. 11th International conference on information science, signal processing and their applications (ISSPA). IEEE, Montreal, pp 740–745Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.RISE ViktoriaGothenburgSweden
  2. 2.University of PassauPassauGermany

Personalised recommendations