Business & Information Systems Engineering

, Volume 58, Issue 5, pp 355–366 | Cite as

Supporting the Refinement of Clinical Process Models to Computer-Interpretable Guideline Models

  • Begoña Martínez-Salvador
  • Mar Marcos
Research Paper


Clinical guidelines contain recommendations on the appropriate management of patients with specific clinical conditions. A prerequisite for using clinical guidelines in information systems is to encode them in a Computer-Interpretable Guideline (CIG) language. However, this is a difficult and demanding task, usually done by IT staff. The goal of the paper is to facilitate the encoding of clinical guidelines in CIG languages, while increasing the involvement of clinicians. To achieve this, it is proposed to support the refinement of guideline processes from a preliminary specification in a business process language to a detailed implementation in one of the available CIG languages. The approach relies on the use of the Business Process Model and Notation (BPMN) for the specification level, a CIG language for the implementation level, and on algorithms to semi-automatically transform guideline models in BPMN into the CIG language of choice. As a first step towards the implementation of the approach, in this work algorithms are implemented to transform a BPMN specification of clinical processes into the PROforma CIG language, and are successfully applied to several clinical guidelines.


Clinical guideline representation BPMN PROforma Transformation between process languages 



This research has been supported by Universitat Jaume I through Project P1\(\cdot\)1B2013-15, and by the Spanish Ministry of Economy and Competitiveness and the EU FEDER programme through Project TIN2014-53749-C2-1-R.


  1. Bae J, Bae H, Kang SH, Kim Y (2004) Automatic control of workflow processes using ECA rules. IEEE Trans Knowl Data Eng 16(8):1010–1023CrossRefGoogle Scholar
  2. Boxwala AA, Tu S, Peleg M, Zeng Q, Ogunyemi O, Greenes RA, Shortliffe EH, Patel VL (2001) Toward a representation format for sharable clinical guidelines. J Biomed Inform 34(3):157–169CrossRefGoogle Scholar
  3. Bury J, Hurt C, Aea Roy (2005) Lisa: a web-based decision-support system for trial management of childhood acute lymphoblastic leukaemia. Br J Haematol 129:746–754CrossRefGoogle Scholar
  4. COSSAC (2013a) Credo project. Interdisciplinary Research Collaboration in Cognitive Science and Systems Engineering (COSSAC). Accessed 28 July 2016
  5. COSSAC (2013b) Tallis training. Interdisciplinary Research Collaboration in Cognitive Science and Systems Engineering. Accessed 28 July 2016
  6. Coulson A, Glasspool D, Fox J, Emery J (2001) Rags: a novel approach to computerised genetic risk assessment and decision support from pedigrees. Methods Inform 40:315–322Google Scholar
  7. de Clercq PA, Blom JA, Korsten HH, Hasman A et al (2004) Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med 31(1):1–28CrossRefGoogle Scholar
  8. Domínguez E, Pérez B, Zapata M (2010) Towards a traceable clinical guidelines application. A model-driven approach. Methods Inf Med 49(6):571–580CrossRefGoogle Scholar
  9. Dugan L, Palmer N (2012) BPMN 2.0 handbook second edition: updated and expanded. Making a BPMN 2.0 model executable, Future Strategies Inc., Book Division, pp 71–91Google Scholar
  10. Emery J, Walton R, Murphy M et al (2000) Computer support for interpreting family histories of breast and ovarian cancer in primary care: comparative study with simulated cases. Br Med J 321:28–32CrossRefGoogle Scholar
  11. Field MJ, Lohr KN (1990) Clinical practice guidelines: directions for a new program. The National Academies Press, Committee to Advise the Public Health Service on Clinical Practice Guidelines, Institute of MedicineGoogle Scholar
  12. González-Ferrer A, Fernández-Olivares J, Castillo L (2013) From business process models to hierarchical task network planning domains. Knowl Eng Rev 28(2):175–193CrossRefGoogle Scholar
  13. Götz M, Roser S, Lautenbacher F, Bauer B (2009) Token analysis of graph-oriented process models. In: 13th IEEE enterprise distributed object computing conference workshops (EDOCW), pp 15–24Google Scholar
  14. Grando MA, Glasspool D, Fox J (2012) A formal approach to the analysis of clinical computer-interpretable guideline modeling languages. Artif Intell Med 54(1):1–13CrossRefGoogle Scholar
  15. Hashemian N, Abidi SSR (2012) Modeling clinical workflows using business process modeling notation. In: 25th international symposium on computer-based medical systems (CBMS), pp 1–4Google Scholar
  16. Kiepuszewski B, Maria ter Hofstede AH, Bussler CJ (2000) On structured workflow modelling. LNCS 1789. Springer, HeidelbergGoogle Scholar
  17. Kirchner K, Malessa C, Scheuerlein H, Settmacher U (2014) Experience from collaborative modeling of clinical pathways. In: Hess M, Schlieter H (eds) Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung, p 13Google Scholar
  18. Marcos M, Balser M, ten Teije A, van Harmelen F, Duelli C (2003) Experiences in the formalisation and verification of medical protocols. Artificial intelligence in medicine. Springer, HeidelbergGoogle Scholar
  19. Martínez-Salvador B, Marcos M, Sánchez A (2014) An algorithm for guideline transformation: from BPMN to PROforma. Knowledge representation for health care. Springer, HeidelbergGoogle Scholar
  20. Martínez-Salvador B, Marcos M, Riaño D (2015) An algorithm for guideline transformation: from BPMN to SDA. Procedia Comput Sci 63:244–251CrossRefGoogle Scholar
  21. Mendling J, Lassen KB, Zdun U (2008) On the transformation of control flow between block-oriented and graph-oriented process modelling languages. Int J Bus Process Integr Manag 3(2):96–108CrossRefGoogle Scholar
  22. Mendling J, Reijers H, van der Aalst W (2010) Seven process modeling guidelines (7 pgm). Inf Softw Technol 52:127–136CrossRefGoogle Scholar
  23. Mohler J, Amstrong A, Bahnson R, Boston B, Busby J, D’Amico A, Eastham J, Enke C, Farrington T, Higano C, Horwitz E, Kantoff P, Kawachi M, Kuette M, Lee R, MacVicar G, Malcolm A, Miller D, Plimack E, Pow-Sang J, Mr Roach, Rohren E, Rosenfeld S, Srinivas S, Strope S, Tward J, Twardowski P, Walsh P, Ho M, Sheadm D (2012) Prostate cancer, version 3.2012: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw 10(9):1081–1087Google Scholar
  24. OMG (2011) Busines process model and notation (BPMN) version 2.0. Accessed 28 July 2016
  25. Ouyang C, Dumas M, Aalst WM, Hofstede AHT, Mendling J (2009) From business process models to process-oriented software systems. ACM Transactions on Software Engineering and Methodology (TOSEM) 19(1):2Google Scholar
  26. Parra C, Jódar-Sánchez F, Jiménez-Hernández MD, Vigil E, Palomino-García A, Moniche-Álvarez F, De la Torre-Laviana FJ, Bonachela P, Fernández FJ, Cayuela-Domínguez A et al (2012) Development, implementation, and evaluation of a telemedicine service for the treatment of acute stroke patients: telestroke. Interact J Med Res 1(2)Google Scholar
  27. Patel VL, Allen VG, Arocha JF, Shortliffe EH (1998) Representing clinical guidelines in GLIF individual and collaborative expertise. J Am Med Inform Assoc 5(5):467–483CrossRefGoogle Scholar
  28. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson PD, Jones N, Kumar A et al (2003) Comparing computer-interpretable guideline models: a case-study approach. J Am Med Inform Assoc 10(1):52–68CrossRefGoogle Scholar
  29. Recker J (2010) Opportunities and constraints: the current struggle with bpmn. Bus Process Manag J 16(1):181–201CrossRefGoogle Scholar
  30. Rojo MG, Rolón E, Calahorra L, García F, Sánchez RP, Ruiz F, Ballester N, Armenteros M, Rodríguez T, Espartero RM et al (2008) Implementation of the business process modelling notation (BPMN) in the modelling of anatomic pathology processes. Diagn Pathol 3(Suppl 1):S22CrossRefGoogle Scholar
  31. Rolón E, García F, Ruiz F, Piattini M, Calahorra L, García M, Martin R (2008) Process modeling of the health sector using bpmn: a case study. In: Proceedings of the first international conference on health informatics (HEALTHINF), diagnostic pathology, vol 2, pp 173–178Google Scholar
  32. Scheuerlein H, Rauchfuss F, Dittmar Y, Molle R, Lehmann T, Pienkos N, Settmacher U (2012) New methods for clinical pathways – business process modeling notation (BPMN) and tangible business process modeling (t. BPM). Langenbeck’s. Arch Surg 397(5):755–761CrossRefGoogle Scholar
  33. Siegel R, Naishadham D, Jeme A (2013) Cancer statistics. Cancer J Clin 63(1):11–30CrossRefGoogle Scholar
  34. Sutton DR, Fox J (2003) The syntax and semantics of the proforma guideline modeling language. J Am Med Inform Assoc 10(5):433–443CrossRefGoogle Scholar
  35. Svagård I, Farshchian BA (2009) Using business process modelling to model integrated care processes: experiences from a European project. Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Springer, HeidelbergGoogle Scholar
  36. Van der Aalst WM, Ter Hofstede AH, Kiepuszewski B, Barros AP (2003) Workflow patterns. Distrib Parallel Databases 14(1):5–51CrossRefGoogle Scholar
  37. zur Muehlen M, Recker J (2008) How much language is enough? Theoretical and practical use of the business process modeling notation. In: 20th international conference on advanced information systems engineering, LNCS. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Department of Computer Engineering and ScienceUniversitat Jaume ICastellónSpain

Personalised recommendations