Abstract
This paper proposes a concept for a prescriptive control of business processes by using event-based process predictions. In this regard, it explores new potentials through the application of predictive analytics to big data while focusing on production planning and control in the context of the process manufacturing industry. This type of industry is an adequate application domain for the conceived concept, since it features several characteristics that are opposed to conventional industries such as assembling ones. These specifics include divergent and cyclic material flows, high diversity in end products’ qualities, as well as non-linear production processes that are not fully controllable. Based on a case study of a German steel producing company – a typical example of the process industry – the work at hand outlines which data becomes available when using state-of-the-art sensor technology and thus providing the required basis to realize the proposed concept. However, a consideration of the data size reveals that dedicated methods of big data analytics are required to tap the full potential of this data. Consequently, the paper derives seven requirements that need to be addressed for a successful implementation of the concept. Additionally, the paper proposes a generic architecture of prescriptive enterprise systems. This architecture comprises five building blocks of a system that is capable to detect complex event patterns within a multi-sensor environment, to correlate them with historical data and to calculate predictions that are finally used to recommend the best course of action during process execution in order to minimize or maximize certain key performance indicators.
This is a preview of subscription content, access via your institution.








References
Aggarwal C (2012) An introduction to sensor data analytics. In: Aggarwal C (ed) Managing and mining sensor data. Springer, New York, pp 1–8
Akerkar B (2013) Advanced data analytics for business. In: Akerkar B (ed) Big data computing. CRC Press, Boca Raton, pp 373–397
Allwood J, Cullen J (2012) Sustainable materials with both eyes open. UIT Cambridge, Cambridge
Benbasat I, Goldstein D, Mead M (1987) The case research strategy in studies of information systems. MIS Q 11(3):369–386
BITKOM (2012) Big Data im Praxiseinsatz – Szenarien, Beispiele. Effekte, BITKOM, Berlin
Bruns R, Dunkel J (2010) Event-Driven Architecture. Springer, Berlin
Buhl H, Röglinger M, Moser F, Heidemann J (2013) Big data. A fashionable topic with(out) sustainable relevance for research and practice? Bus Inf. Syst Eng 5(2):65–69
Camacho E, Bordons C (2007) Model predictive control. Springer, London
Chan KH, Dozal-Mejorada EJ, Cheng X, Kephart R, Ydstie BE (2014) Predictive control with adaptive model maintenance: application to power plants. Comput Chem Eng 70(1):91–103
Darke P, Shanks G, Broadbent M (1998) Successfully completing case study research: combining rigour, relevance and pragmatism. Inf Syst J 8(4):273–289
Dhar V (2013) Data science and prediction. Commun ACM 56(12):64–73
Dhar V, Jarke M, Laartz J (2014) Big data. Bus Inf Syst Eng 6(5):257–259
Dixon J, Jones T (2011) Hype cycle for business process management, 2011. https://www.gartner.com/doc/1751119. Accessed 28 May 2015
Eckert M, Bry F (2009) Complex event processing (CEP). Informatik-Spektrum 32(2):163–167
Elghoneimy E, Gruver W (2011) Intelligent decision support and agent-based techniques applied to wood manufacturing. In: International symposium on distributed computing and artificial intelligence 91(1):85–88
Engel Y, Etzion O (2011) Towards proactive event-driven computing. In: Proceedings of the 5th ACM international conference on distributed event-based system. New York
Engel Y, Etzion O, Feldman Z (2012) A basic model for proactive event-driven computing. In: Proceedings of the 6th ACM international conference on distributed event-based systems, Berlin
Etzion O, Niblett P (2011) Event processing in action. Manning Publications, Stamford
Evans JR, Lindner CH (2012) Business analytics. Decis Line 43(2):4–6
Fischer K, Jacobi S, Diehl C, Theis C (2004) Multiagent technologies for steel production and control. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology, Beijing
Fülöp L, Beszédes Á, Tóth G, Demeter H, Vidács L, Farkas L (2012) Predictive complex event processing. In: Proceedings of the 5th Balkan conference in informatics, Novi Sad
Goode K, Moore J, Roylance B (2000) Plant machinery working life prediction method utilizing reliability and condition-monitoring data. J Process Mech Eng 214(2):109–122
Graichen K, Egretzberger M, Kugi A (2010) Ein suboptimaler Ansatz zur schnellen modellprädiktiven Regelung nichtlinearer Systeme. Automatisierungstechnik 58(8):447–456
Gröger C, Schwarz H, Mitschang B (2014) Prescriptive analytics for recommendation-based business process optimization. In: Abramowicz W, Kokkinaki A (eds) Business information systems. Springer, Heidelberg, pp 25–37
Hahn D, Lassmann G (1999) Produktionswirtschaft – Controlling industrieller Produktion. Physica-Verlag, Heidelberg
Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, Hooker J, Méndez C, Sand G, Wassick J (2014) Scope for industrial applications of production scheduling models and solution methods. Comput Chem Eng 62(1):161–193
Heng A, Tan ACC, Mathew J, Montgomery N, Banjevic D, Jardine AKS (2009) Intelligent condition-based prediction of machinery reliability. Mech Syst Signal Process 23(5):1600–1614
Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Q 28(1):75–105
International Electrotechnical Commission (2013) IEC 62264-1:2013 – enterprise-control system integration. IEC, Geneva
Jacobi S, León-Soto E, Madrigal-Mora C, Fischer K (2007) MasDISPO: a multiagent decision support system for steel production and control. In: Proceedings of the 19th National conference on innovative applications of artificial intelligence, Vancouver, pp 1707–1714
Jahangirian M, Eldabi T, Naseer A, Stergioulas LK, Young T (2010) Simulation in manufacturing and business: a review. Eur J Oper Res 203(1):1–13
Janiesch C, Matzner M, Müller O (2012) Beyond process monitoring: a proof-of-concept of event-driven business activity management. Bus Process Manag J 18(4):625–643
Jardine A, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510
Jarke M (2014) Interview with Michael Feindt on “Prescriptive big data analytics”. Bus Inf Syst Eng 6(5):301–302
Kagermann H, Lukas W, Wahlster W (2011) Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution. In: VDI Nachrichten 13. VDI Verlag, Düsseldorf
Kittisupakorn P, Thitiyasook P, Hussain M, Daosud W (2009) Neural network based model predictive control for a steel pickling process. J Process Control 19(4):579–590
Konrad B, Lieber D, Deuse J (2012) Striving for zero defect production: intelligent manufacturing control through data mining in continuous rolling mill processes. In: Windt K (ed) Robust manufacturing control. Springer, Heidelberg, pp 215–229
Kowalczyk M, Buxmann P (2014) Big Data and information processing in organizational decision processes. A multiple case study. Bus Inf Syst Eng 6(5):267–278
Krumeich J, Jacobi S, Werth D, Loos P (2014a) Big data analytics for predictive manufacturing control – a case study from process industry. In: Proceedings of the IEEE 3rd International congress on big data, Anchorage, pp 530–537
Krumeich J, Jacobi S, Werth D, Loos P (2014b) Towards planning and control of business processes based on event-based predictions. In: Abramowicz W, Kokkinaki A (eds) Business information systems. Springer, Heidelberg, pp 38–49
Krumeich J, Schimmelpfennig J, Werth D, Loos P (2014c) Realizing the predictive enterprise through intelligent process predictions based on big data analytics: a case study and architecture proposal. Köllen, Bonn, pp 1253–1264
Krumeich J, Weis B, Werth D, Loos P (2014d) Event-driven business process management: where are we now? Bus Process Manag J 20(4):615–633
Krumeich J, Werth D, Loos P, Schimmelpfennig J, Jacobi S (2014e) Advanced planning and control of manufacturing processes in steel industry through big data analytics: case study and architecture proposal. In: Proceedings of the 2014 IEEE international conference on big data, Washington, pp 16–24
Krumeich J, Werth D, Loos P (2015a) Enhancing organizational performance through event-based process predictions. In: Proceedings of the 21st Americas conference on information systems, Puerto Rico, pp 1–12
Krumeich J, Mehdiyev N, Werth D, Loos P (2015b) Towards an extended metamodel of event-driven process chains to model complex event patterns. In: Jeusfeld M, Karlapalem K (eds) Advances in conceptual modeling. Springer, Heidelberg, pp 119–130
Kurbel K (2005) Produktionsplanung und -steuerung im Enterprise Resource Planning und Supply Chain Management, 6th edn. Oldenbourg, München
Lasi H, Fettke P, Kemper H-G, Feld T, Hoffman M (2014) Industry 4.0. Bus Inf. Syst Eng 6(4):239–242
Loos P (1997) Produktionslogistik in der chemischen Industrie. Gabler, Wiesbaden
Loos P, Allweyer T (1998) Application of production planning and scheduling in the process industries. Comput Ind 36(3):199–208
Luckham D (2002) The power of events. Addison-Wesley, Boston
Luckham D (2012) Event processing for business. Wiley, Hoboken
Lundberg A (2006) Leverage complex event processing to improve operational performance. Bus Intell J 11(1):55–65
Margara A, Cugola G, Tamburrelli G (2014) Learning from the past: automated rule generation for complex event processing. In: Proceedings of the 8th ACM international conference on distributed event-based systems, Mumbai, pp 47–58
May C (1996) PPS mit Neuronalen Netzen. Deutscher Universitäts-Verlag, Wiesbaden
Mehdiyev N, Krumeich J, Werth D, Loos P (2015a) Sensor event mining with hybrid ensemble learning and evolutionary feature subset selection model. In: Proceedings of the 2015 IEEE international conference on big data, Santa Clara
Mehdiyev N, Krumeich J, Enke D, Werth D, Loos P (2015b) Determination of rule patterns in complex event processing using machine learning techniques. Procedia Comput Sci 61(1):395–401
Mehdiyev N, Krumeich J, Werth D, Loos P (2016) Determination of event patterns for complex event processing using unordered fuzzy rule induction with multi-objective evolutionary feature subset selection. In: Proceedings of the 49th Hawaii international conference on system sciences. Kauai
Metz D, Karadgi S, Müller U, Grauer M (2012) Self-learning monitoring and control of manufacturing processes based on rule induction and event processing. In: Proceedings of the 4th international conference on information, process, and knowledge management. Valencia, pp 88–92
Minelli M, Chambers M, Dhiraj A (2013) Big data, big analytics. Emerging business intelligence and analytic trends for today’s businesses. Wiley, Hoboken
Niamsuwan S, Kittisupakorn P, Mujtaba I (2014) Control of milk pasteurization process using model predictive approach. Comput Chem Eng 66(1):2–11
Pettey C, Goasduff L (2011) Gartner says between now and year-end 2014, overlooked but easily detectable business process defects will topple 10 global 2000 companies. http://www.gartner.com/newsroom/id/1530114. Accessed 28 May 2015
Rainer C (2013) Anwendung von Data-Mining zur Abbildung von Planungsregeln in der flexibilitätsorientierten Prozessindustrie. In: Zsifkovits H, Altendorfer S (eds) Logistics Systems Engineering. Hampp, Mering, pp 45–58
Rapp W (2002) Information technology strategies. Oxford University Press, Oxford
Redlich D, Gilani W (2012) Event-driven process centric performance prediction via simulation. Springer, Berlin, pp 473–478
Riebel P (1963) Industrielle Erzeugungsverfahren in betriebswirtschaftlicher Sicht. Gabler, Wiesbaden
Scheer A-W (1998) Wirtschaftsinformatik: Referenzmodelle für industrielle Geschäftsprozesse, 2nd edn. Springer, Berlin
Schlegel K, Sallam R, Yuen D, Tapadinhas J (2013) Magic quadrant for business intelligence and analytics platforms. https://www.gartner.com/doc/2326815/magic-quadrant-business-intelligence-analytics. Accessed 28 May 2015
Schwegmann B, Matzner M, Janiesch C (2013) A method and tool for predictive event-driven process analytics. In: Proceedings of the 11th International Conference on Wirtschaftsinformatik, vol 1, Leipzig, pp 721–736
Shobrys D, White D (2002) Planning, scheduling and control systems: why cannot they work together. Comput Chem Eng 26(2):149–160
Statista (2015) Stahlproduzenten nach Produktionsmenge in Deutschland 2014. http://de.statista.com/statistik/daten/studie/153022/umfrage/die-groessten-stahlproduzenten-nach-produktionsmenge-in-deutschland/. Accessed 29 May 2015
United Nations (2008) International standard industrial classification of all economic activities, rev 4. United Nations Publications, New York
Unni K (2012) Steel manufacturing could use more sensing and analysis. http://www.sensorsmag.com/process-industries/steel-manufacturing-could-use-more-sensing-and-analysis-10249. Accessed 28 May 2015
van der Aalst et al. (2012) Process mining manifesto. In: Daniel F et al (eds) Business process management workshops. Springer, Heidelberg, pp 169–194
Veldman J, Klingenberg W, Wortmann H (2011) Managing condition-based maintenance technology. J Qual Maint Eng 17(1):40–62
Viaene S (2013) Data scientists aren’t domain experts. IT Professional 15(6):12–17
Vidačković K (2014) Eine Methode zur Entwicklung dynamischer Geschäftsprozesse auf Basis von Ereignisverarbeitung, PhD thesis. Universität Stuttgart, Stuttgart
von Ammon R, Ertlmaier T, Etzion O, Kofman A, Paulus P (2010) Integrating complex events for collaborating and dynamically changing business processes. In: Dan A et al (eds) Service-oriented computing. ICSOC/ServiceWave 2009 workshops. Springer, Heidelberg, pp 370–384
Widder A, von Ammon R, Schaeffer P, Wolff C (2007) Identification of suspicious, unknown event patterns in an event cloud. In: Proceedings of the 2007 Inaugural international conference on distributed event-based systems. Toronto, pp 164–170
Wortmann F, Flüchter K (2015) Internet of things. Technology and value added. Bus Inf Syst Eng 57(3):221–224
Yonder Blue (2013) Industrial Big Data: Die Zukunft kennen – Prozesse automatisieren. Blue Yonder, Karlsruhe
Yam R, Tse P, Li L, Tu P (2001) Intelligent predictive decision support system for condition-based maintenance. Int J Adv Manuf Technol 17(5):383–391
Zhu D, Zheng Z, Gao X (2010) Intelligent optimization-based production planning and simulation analysis for steelmaking and continuous casting process. J Iron Steel Res Int 17(9):19–30
Acknowledgments
This research was funded in part by the German Federal Ministry of Education and Research under grant numbers 01IS12050 (project IDENTIFY) and 01IS14004A (project iPRODICT).
Author information
Authors and Affiliations
Corresponding author
Additional information
Accepted after two revisions by Prof. Jarke.
Rights and permissions
About this article
Cite this article
Krumeich, J., Werth, D. & Loos, P. Prescriptive Control of Business Processes. Bus Inf Syst Eng 58, 261–280 (2016). https://doi.org/10.1007/s12599-015-0412-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12599-015-0412-2