Skip to main content

Model-Based Decision Support in Manufacturing and Service Networks

Abstract

In this paper, we sketch some of the challenges that should be addressed in future research efforts for model-based decision support in manufacturing and service networks. This includes integration issues, taking into account the autonomy of the decision-making entities in face of information asymmetry, the modeling of preferences of the decision makers, efficiently determining robust solutions, i.e. solutions that are insensitive with respect to changes in the problem data, and a reduction of the time needed for model building and usage. The problem solution cycle includes problem analysis, the design of appropriate algorithms and their performance assessment. We are interested in a prototypical integration of the proposed methods within application systems, which can be followed up with field tests of the extended application systems. We argue that the described research agenda requires the interdisciplinary collaboration of business and information systems engineering researchers with colleagues from management science, computer science, and operations research. In addition, we present some exemplifying, illustrative examples of relevant research results.

This is a preview of subscription content, access via your institution.

References

  1. Barlatt AY, Cohn A, Gusikhin O, Fradkin Y, Davidson R, Batey J (2012) Ford motor company implements integrated planning and scheduling in a complex automotive manufacturing environment. Interfaces 42(5):478–491

    Article  Google Scholar 

  2. Belz R, Mertens P (1994) SIMULEX – a multiattribute DSS to solve rescheduling problems. Annals of Operations Research 52(3):107–129

    Article  Google Scholar 

  3. Bilyk A, Mönch L (2012) Variable neighborhood search-based subproblem solution procedures for a parallel shifting bottleneck heuristic for complex job shops. In: Proc of IEEE conference on automation science and engineering, Seoul, pp 415–420

    Google Scholar 

  4. Crainic TG, Gendreau M, Potvin JY (2009) Intelligent freight-transportation systems: assessment and the contribution of operations research. Transportation Research Part C: Emerging Technologies 16(6):541–557

    Article  Google Scholar 

  5. D’Andrea R (2012) A revolution in the warehouse: a retrospective on Kiva systems and the grand challenges ahead. IEEE Transaction on Automation Science and Engineering 9(4):638–639

    Article  Google Scholar 

  6. Degbotse A, Denton BT, Fordyce K, Milne RJ, Orzell R, Wang C-T (2013) IBM blends heuristics and optimization to plan its semiconductor supply chain. Interfaces 43(2):130–142

    Article  Google Scholar 

  7. Dudek G (2009) Collaborative planning in supply chains, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  8. Driessel R, Mönch L (2012) An integrated scheduling and material handling approach for complex job shops: a computational study. International Journal of Production Research 50(20):5966–5985

    Article  Google Scholar 

  9. Dück V, Ionescu L, Kliewer N, Suhl L (2012) Increasing stability of crew and aircraft schedules. Transportation Research Part C: Emerging Technologies 20(1):47–61

    Article  Google Scholar 

  10. Ehm H, Wenke H, Mönch L, Ponsignon T, Forstner L (2011) Towards a supply chain simulation reference model for the semiconductor industry. In: Proc of the 2011 winter simulation conference, Phoenix, USA, pp 2124–2135

    Google Scholar 

  11. Ehmke J, Meisel S, Mattfeld DC (2012) Floating car based travel times for city logistics. Transportation Research Part C: Emerging Technologies 21(1):338–352

    Article  Google Scholar 

  12. Fink A, VoßS (2003) Anwendung von Metaheuristiken zur Lösung betrieblicher Planungsprobleme – Potenziale und Grenzen einer softwaretechnischen Unterstützung. WIRTSCHAFTSINFORMATIK 45(4):395–407

    Article  Google Scholar 

  13. Fink A, Homberger J (2013) An ant-based coordination mechanism for resource-constrained project scheduling with multiple agents and cash flow objectives. Flexible Services and Manufacturing Journal 25(1/2):94–121

    Article  Google Scholar 

  14. Fischbein SA, Yellig E (2011) Why it is so hard to build and validate discrete event simulation models of manufacturing facilities. In: Kempf K, Keskinocak P, Uzsoy R (eds) Planning production and inventories in the extended enterprise: a state of the art handbook, vol 2. Springer, Heidelberg, pp 271–288

    Chapter  Google Scholar 

  15. Graves SC (2010) Uncertainty and production planning. In: Kempf K, Keskinocak P, Uzsoy R (eds) Planning production and inventories in the extended enterprise: a state of the art handbook, vol 1. Springer, Heidelberg, pp 83–102

    Google Scholar 

  16. Greenberg HJ (1996) The ANALYZE rulebase for supporting LP analysis. Annals of Operations Research 65(1):91–126

    Article  Google Scholar 

  17. Kant G, Jacks M, Aantjes C (2008) Coca-Cola enterprises optimizes vehicle routes for efficient product delivery. Interfaces 38(1):40–50

    Article  Google Scholar 

  18. Lang F, Fink A, Schryen G (2012) Elicitating, modeling, and processing uncertain human preferences for software agents in electronic negotiations: an empirical study. In: Proc of the international conference on information systems (ICIS) 2012, Association for Information Systems

    Google Scholar 

  19. Maniezzo V, Stützle T, VoßS (eds) (2009) Matheuristics: hybridizing metaheuristics and mathematical programming. Annals of information systems, vol 10. Springer, Heidelberg

    Google Scholar 

  20. Mönch L (2006) Autonome und kooperative Steuerung komplexer Produktionsprozesse mit Multi-Agenten-Systemen. WIRTSCHAFTSINFORMATIK 48(2):107–119

    Article  Google Scholar 

  21. Nisan N, Rougarden T, Tardos E, Vazirani VV (eds) (2007) Algorithmic game theory. Cambridge University Press, New York

    Google Scholar 

  22. Orcun S, Asmundsson JM, Uzsoy R, Clement JP, Pekny JF, Rardin RL (2007) Supply chain optimization and protocol environment (SCOPE) for rapid prototyping and analysis of complex supply chains. Production Planning & Control 18(5):388–406

    Article  Google Scholar 

  23. Pfeiffer J, Golle U, Rothlauf F (2008) Reference point based multi-objective algorithms for group decisions. In: Proc of the genetic and evolutionary computation conference, pp 697–704

    Google Scholar 

  24. Plattner H, Zeier A (2011) In-memory data management – an inflection point for enterprise applications. Springer, Heidelberg

    Google Scholar 

  25. Rose O (2007) Improved simple simulation models for semiconductor wafer fabrication facilities. In: Proc of the 2007 winter simulation conference, pp 1708–1712

    Chapter  Google Scholar 

  26. Rothlauf F (2011) Design of modern heuristics: principles and application. Springer, Heidelberg

    Book  Google Scholar 

  27. Schneeweiss C (2003) Distributed decision making, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  28. Schulz C, Hasle G, Brodtkorb AR, Hagen TR (2013) GPU computing in discrete optimization. Part II. Survey focused on routing problems. EURO Journal on Transportation and Logistics 2:159–186

    Article  Google Scholar 

  29. Schütte R (2012) In-Memory-Technologien: Überlegungen zur Begründbarkeit und zum Einsatz beim Betrieb von großen Systemen, WI-Meinung/Dialog. WIRTSCHAFTSINFORMATIK 54(4):211–213

    Google Scholar 

  30. Steinzen I, Gintner V, Suhl L, Kliewer N (2010) A time-space network approach for the integrated vehicle and crew scheduling problem with multiple depots. Transportation Science 44(3):367–382

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Reha Uzsoy, North Carolina State University, for useful comments on this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lars Mönch.

Additional information

Accepted after two revisions by the editors of the special focus.

This article is also available in German in print and via http://www.wirtschaftsinformatik.de: Fink A, Kliewer N, Mattfeld D, Mönch L, Rothlauf F, Schryen G, Suhl L, Voß S (2014) Modellbasierte Entscheidungsunterstützung in Produktions- und Dienstleistungsnetzwerken. WIRTSCHAFTSINFORMATIK. doi: 10.1007/s11576-013-0402-2.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fink, A., Kliewer, N., Mattfeld, D. et al. Model-Based Decision Support in Manufacturing and Service Networks. Bus Inf Syst Eng 6, 17–24 (2014). https://doi.org/10.1007/s12599-013-0310-4

Download citation

Keywords

  • Model-based decision support
  • Manufacturing and service networks
  • Research areas in business and information systems engineering