We'd like to understand how you use our websites in order to improve them. Register your interest.

Music as a Service as an Alternative to Music Piracy?

An Empirical Investigation of the Intention to Use Music Streaming Services


Despite increasing acceptance of digital channels, total sales in the music business decreased by 31 % from 2004 to 2010. Music piracy is still considered one of the main causes for this. However, several studies found no effects or even positive effects of illegal downloading on record sales. In the past, piracy has been counteracted especially by prosecution and legal offers. Music as a Service (MaaS) represents a new, differing distribution approach in digital music. In contrast to the well-known music platforms for so-called à-la-carte downloads, such as the iTunes Store, MaaS possesses two important characteristics: transmission (streaming instead of downloading) and pricing model (flat rate instead of pay-per-download). Therefore, the consumption of music by means of purchasing and downloading is replaced by a monthly payment service (paid MaaS) and an ad-supported (free MaaS) service. First user surveys suggest that many music pirates are making use of these offers. To find out if MaaS is an attractive distribution channel for music pirates, we developed a model to explain the intention to use MaaS based on the Theory of Planned Behavior. To empirically test this model, we surveyed 132 music pirates. Among others, the outcome shows that the intention to use free MaaS is mainly affected by the attitude towards MaaS, while using paid MaaS is predominantly a result of the influence of users’ closest peers. The attitude towards MaaS is positively influenced by the desire to receive music recommendations, the payment type (in the form of a flat rate model), and the relative advantage of MaaS compared to illegal choices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    The results also remain robust when using other replacement approaches and a case-based exclusion of data sets.

  2. 2.

    In order to assure that the chosen methodical approach is not subject to systematic errors we also applied the item re-use technique (Mode B). Here, the results also show that moral scruples and search costs are the most important influence factors within the construct. The remaining path coefficients of the structural equation model did not result in significant changes confirming the robustness of the results.


  1. Adams JS (1963) Toward an understanding of inequity. Journal of Abnormal and Social Psychology 67(5):422–436

  2. Ajzen I (1991) The theory of planned behavior. Organizational Behavior and Human Decision Processes 50(2):179–211

  3. Ajzen I (2002) Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology 32(4):665–683

  4. Ajzen I, Fishbein M (1980) Understanding attitudes and predicting social behavior. Prentice Hall, New York

  5. Al-Rafee S, Cronan T (2006) Digital piracy: factors that influence attitude toward behavior. Journal of Business Ethics 63(3):237–259

  6. Anderson C (2009) Free – the future of a radical price. Random House, London

  7. Armstrong JS, Overton TS (1977) Estimating nonresponse bias in mail surveys. Journal of Marketing Research 14(3):396–402

  8. Arndt J (1967) Role of product-related conversations in the diffusion of a new product. Journal of Marketing Research 4(3):291–295

  9. Becker J-M, Klein K, Wetzels M (2012) Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models. Long Range Planning 45(5–6):359–394

  10. Belk RW (1985) Materialism: trait aspects of living in the material world. Journal of Consumer Research 12(3):265–280

  11. Benlian A, Hess T (2010) IT standard implementation and business process outcomes – an empirical analysis of XML in the publishing industry. In: Proceedings of the 31st international conference on information systems, St. Louis, p 21

  12. Benlian A, Hess T, Buxmann P (2009) Drivers of saas-adoption: an empirical study of different application types. Business & Information Systems Engineering 1(5):357–369

  13. Bhattacharjee S, Gopal RD, Lertwachara K, Marsden JR (2003a) No more shadow boxing with online music piracy: strategic business models to enhance revenues. In: Proceedings of the 36th annual Hawaii international conference on system sciences, Hawaii, p 11

  14. Bhattacharjee S, Gopal RD, Sanders GL (2003b) Digital music and online sharing: software piracy 2.0? Communications of the ACM 46(7):107–111

  15. Bounie D, Bourrreau M, Waelbroeck P (2007) Pirates or explorers? Analysis of music consumption in French graduate schools. Brussels Economic Review 50(2):167–192

  16. Buhl HU, Weinhardt C (2009) BISE’s responsibility in service research. Business & Information Systems Engineering 1(6):405–407

  17. Burkart P (2008) Trends in digital music archiving. Information Society 24(4):246–250

  18. Buxmann P, Pohl G, Johnscher P, Strube J (2005) Strategien für den digitalen Musikmarkt – Preissetzung und Effektivität von Maßnahmen gegen Raubkopien. WIRTSCHAFTSINFORMATIK 47(2):118–125

  19. Buxmann P, Strube J, Pohl G (2007) Cooperative pricing in digital value chains – the case of online music. Journal of Electronic Commerce Research 8(1):32–40

  20. Chen Y-C, Shang R-A, Lin A-K (2008) The intention to download music files in a P2P environment: consumption value, fashion, and ethical decision perspectives. Electronic Commerce Research & Applications 7(4):411–422

  21. Chiang EP, Assane D (2008) Music piracy among students on the university campus: do males and females react differently? Journal of Socio-Economics 37(4):1371–1380

  22. Childers TL, Carr CL, Peckc J, Carson S (2001) Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing 77(4):511–535

  23. Chin WW (1998) The partial least squares approach for structural equation modeling. In: Marcoulides GA (ed) Modern methods for business research. Lawrence Erlbaum, Hillsdale, pp 295–336

  24. Chiou J-S, Huang C-Y, Lee H-H (2005) The antecedents of music piracy attitudes and intentions. Journal of Business Ethics 57(2):161–174

  25. Choudhury V, Karahanna E (2008) The relative advantage of electronic channels: a multidimensional view. MIS Quarterly 32(1):179–200

  26. Cohen J (1988) Statistical power and analysis for behavioral sciences. Lawrence Erlbaum, Hillsdale

  27. Coyle JR, Gould SJ, Gupta P, Gupta R (2009) To buy or to pirate: the matrix of music consumers’ acquisition-mode decision-making. Journal of Business Research 62(10):1031–1037

  28. d’Astous A, Colbert FO, Montpetit D (2005) Music piracy on the web – how effective are anti-piracy arguments? Evidence from the theory of planned behaviour. Journal of Consumer Policy 28(3):289–310

  29. Danaher B, Dhanasobhon S, Smith MD, Telang R (2010) Converting pirates without cannibalizing purchasers: the impact of digital distribution on physical sales and Internet piracy. Marketing Science 29(6):1138–1151

  30. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3):319–340

  31. Diamantopoulos A, Winklhofer HM (2001) Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research 38(2):269–277

  32. Dibbern J, Heinzl A, Schaub N (2007) Determinanten der Akzeptanz von mobilen Bankdiensten: Test eines Drei-Perspektiven-Modells. In: Bayón T, Herrmann A, Huber F (eds) Vielfalt und Einheit in der Marketingwissenschaft. Gabler, Wiesbaden, pp 449–478

  33. Dörr J (2012) Music as a Service – Ein neues Geschäftsmodell für digitale Musik. epubli, Berlin

  34. Dörr J, Benlian A, Grau C, Wilde T (2009) Musikdistribution ohne Digital Rights Management – Eine empirische Analyse der Lock-in- und Netzeffekte im Ecosystem iTunes. In: Proceedings of the 9th international conference Wirtschaftsinformatik, Vienna, p 9

  35. Dörr J, Benlian A, Vetter J, Hess T (2010) Pricing of content services – an empirical investigation of music as a service. In: Proceedings of the 16th Americas conference on information systems, Lima, p 9

  36. Douglas DE, Cronan TP, Behel JD (2007) Equity perceptions as a deterrent to software piracy behavior. Information & Management 44(5):503–512

  37. Fetscherin M, Zaugg S (2004) Music piracy on peer-to-peer networks. In: Proceedings of the 2004 IEEE international conference on e-technology, e-commerce and e-service, Taipei, p 9

  38. Fornell C, Bookstein F (1982) Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research 19(4):440–452

  39. Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18(1):39–50

  40. Fraedrich JP, Ferrell OC (1992) The impact of perceived risk and moral philosophy type on ethical decision making in business organizations. Journal of Business Research 24(4):283–295

  41. Freedman D (2003) Managing pirate culture: corporate responses to peer-to-peer networking. The International Journal on Media Management 5(3):173–179

  42. Glass RS, Wood WA (1996) Situational determinants of software piracy: an equity theory perspective. Journal of Business Ethics 15(11):1189–1198

  43. Gopal R, Bhattacharjee S, Sanders L (2006) Do artists benefit from online music sharing? Journal of Business 79(3):1503–1533

  44. Gopal RD, Sanders GL (2003) Digital music and online sharing: software piracy 2.0? Communications of the ACM 46(7):107–111

  45. Götz O, Liehr-Gobbers K (2004) Analyse von Strukturgleichungsmodellen mit Hilfe der Partial-Least-Squares(PLS)-Methode. Betriebswirtschaft 64(6):714–738

  46. Graf D (2007) Die Theorie des geplanten Verhaltens. In: Krüger D, Vogt G (eds) Theorien in der biologiedidaktischen Forschung. Springer, Heidelberg, pp 33–43

  47. Grasmugg S, Schmitt C, Veit D (2003) Internet-Quellen zu Peer-to-Peer (P2P)-Systemen. WIRTSCHAFTSINFORMATIK 45(3):335–344

  48. Hair J, Anderson R, Tatham R, Black W (1998) Multivariate data analyses with readings. Prentice Hall, Englewood Cliffs

  49. Heath C, Soll JB (1996) Mental budgeting and consumer decisions. Journal of Consumer Research 23(1):40–52

  50. Henke LL, Donohue TR (1989) Functional displacement of traditional TV viewing by VCR owners. Journal of Advertising Research 29(2):18–23

  51. Hennig-Thurau T, Gwinner KP, Walsh G, Gremler DD (2004) Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the Internet. Journal of Interactive Marketing 18(1):38–52

  52. Henseler J, Ringle CM, Sinkovics RR (2009) The use of partial least squares path modeling in international marketing. Advances in International Marketing 20(4):277–319

  53. Hess T, Ünlü V (2004) Systeme für das Management digitaler Rechte. WIRTSCHAFTSINFORMATIK 46(4):273–280

  54. Hildenbrand T, Korchminskaya A, Oswald S, Bieber E, Berchez J-P, Maché N (2007) Konzeption einer Kollaborationsplattform für die zwischenbetriebliche Softwareerstellung. WIRTSCHAFTSINFORMATIK 49(4):247–256

  55. Hinz O, Eckert J (2010) The impact of search and recommendation systems on sales in electronic commerce. Business & Information Systems Engineering 2(2):67–77

  56. Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis. Structural Equation Modeling 6(1):1–55

  57. IFPI (2010) IFPI digital music report 2010 – music how, when, where you want it. London

  58. IFPI (2012) IFPI digital music report 2012 – expanding choice. Going Global, London

  59. Jaisingh J (2007) Piracy on file-sharing networks: strategies for recording companies. Journal of Organizational Computing & Electronic Commerce 17(4):329–348

  60. Jarvis CB, Mackenzie SB, Podsakoff PM (2003) A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research 30(2):199–218

  61. Jöreskog K (1993) Testing structural equation models. In: Bollen KA, Long JS (eds) Testing structural equation models. Sage, Newbury Park, pp 294–316

  62. Jöreskog KG, Sörbom D, Wallentin FY (2006) Latent variable scores and observational residuals. Accessed 2012-12-02

  63. Kabanoff B (1991) Equity, equality, power and conflict. Academy of Management Review 16(2):416–441

  64. Kwong SW, Park J (2008) Digital music services: consumer intention and adoption. Service Industries Journal 28(10):1463–1481

  65. Kwong TCH, Lee MKO (2002) Behavioral intention model for the exchange mode Internet music piracy. In: Proceedings of the 35th Hawaii international conference on system sciences, Hawaii, p 10

  66. Lambert DM, Harrington TC (1990) Measuring nonresponse bias in customer service mail surveys. Journal of Business Logistics 11(2):5–25

  67. Lambrecht A, Skiera B (2006) Ursachen eines Flatrate-Bias – Systematisierung und Messung der Einflussfaktoren. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung 58(5):588–617

  68. LaRose R, Kim J (2007) Share, steal, or buy? A social cognitive perspective of music downloading. CyberPsychology & Behavior 10(2):267–277

  69. Levin AM, Dato-On MC, Manolis C (2007) Deterring illegal downloading: the effects of threat appeals, past behavior, subjective norms, and attributions of harm. Journal of Consumer Behavior 6(2–3):111–122

  70. Levin AM, Dato-On MC, Rhee K (2004) Money for nothing and hits for free: the ethics of downloading music from peer-to-peer web sites. Journal of Marketing Theory and Practice 12(1):48–60

  71. Liebowitz SJ (2006) File sharing: creative destruction or just plain destruction? Journal of Law & Economics 49(1):1–28

  72. Lin C-H, Sher PJ, Shih H-Y (2005) Past progress and future directions in conceptualizing customer perceived value. International Journal of Service Industry Management 16(4):318–336

  73. Lohmöller J-B (1989) Latent variable path modeling with partial least squares. Springer, Heidelberg

  74. Mann F (2010) Filmdistribution über internetbasierte Abrufdienste. epubli, München

  75. Mathieson K (1991) Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information Systems Research 2(3):173–191

  76. Meuter ML, Bitner MJ, Ostrom AL, Brown SW (2005) Choosing among alternative service delivery modes: an investigation of customer trial of self-service technologies. Journal of Marketing 69(2):61–83

  77. Nandedkar A, Midha V (2009) Optimism in music piracy: a pilot study. In: Proceedings of the 30th international conference on information systems, Phoenix, p 10

  78. Oberholzer-Gee F, Strumpf K (2007) The effect of file sharing on record sales: an empirical analysis. Journal of Political Economy 115(1):1–42

  79. Oestreicher-Singer G, Zalmanson L (2009) “Paying for content or paying for community?” The effect of social involvement on subscribing to media web sites. In: Proceedings of the 30th international conference on information systems, Phoenix, p 17

  80. Pavlou PA, Fygenson M (2006) Understanding and prediction electronic commerce adoption: an extension of the theory of planned behavior. MIS Quarterly 30(1):115–143

  81. Peitz M, Waelbroeck P (2004) The effect of Internet piracy on CD sales – cross section evidence. Review of the Economic Research on Copyright Issues 1(2):71–79

  82. Peitz M, Waelbroeck P (2006) Why the music industry may gain from free downloading – the role of sampling. International Journal of Industrial Organization 24(5):907–913

  83. Peukert C, Claussen J (2012) Piracy and movie revenues: evidence from megaupload. Accessed 2012-12-01

  84. Plowman S, Goode S (2009) Factors affecting the intention to download music: quality perceptions and downloading intensity. Journal of Computer Information Systems 49(4):84–97

  85. Polites GL, Karahanna E (2012) Shackled to the status quo: the inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS Quarterly 36(1):21–42

  86. Polites GL, Roberts N, Thatcher J (2012) Conceptualizing models using multidimensional constructs: a review and guidelines for their use. European Journal of Information Systems 21(1):22–48

  87. Prelec D, Loewenstein G (1998) The red and the black: mental accounting of savings and debt. Marketing Science 17(1):4–28

  88. Ringle CM, Wende S, Will S (2005). SmartPLS 2.0 (M3) beta. Hamburg.

  89. Ringle CM, Sarstedt M, Straub DW (2012) A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly 36(1):iiv-8

  90. Rogers EM (1995) Diffusion of innovations. Free Press, New York

  91. Sandulli FD, Martin-Barbero S (2007) 68 cents per song: a socio-economic survey on the Internet. The International Journal of Research into New Media Technologies 13(1):63–78

  92. Schumann M, Hess T (2009) Grundfragen der Medienwirtschaft. Springer, Heidelberg

  93. Sheppard BH, Hartwick J, Warshaw P (1988) The theory of reasoned action: a meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research 15(3):325–343

  94. Simfy (2011) Simfy – a music networx company. Accessed 2011-11-25

  95. Sinha RK, Mandel N (2008) Preventing digital music piracy: the carrot or the stick? Journal of Marketing 72(1):1–15

  96. Sinha RK, Machado FS, Sellman C (2010) Don’t think twice, it’s all right: music piracy and pricing in a DRM-free environment. Journal of Marketing 74(2):40–54

  97. Straub DW Jr. (1990) Effective IS security: an empirical study. Information Systems Research 1(3):255–276

  98. Sullivan M, Hibbert S (2006) The music collector. In: Advances in consumer research – 7th European conference proceedings, pp 285–291

  99. Sun T, Youn S, Wu G, Kuntaraporn M (2006) Online word-of-mouth (or mouse): an exploration of its antecedents and consequences. Journal of Computer-Mediated Communication 11(4):1104–1127

  100. Thaler RH (2008) Mental accounting and consumer choice. Marketing Science 27(1):15–25

  101. Trepte S, Reinecke L, Richter-Matthies A, Adelberger C, Fittkau J-T (2004) Von Jägern und Sammlern. Motive des MP3-Sharings in Abgrenzung zum CD-Kauf. In: Hasebrink U, Mikos L, Pommer E (eds) Mediennutzung in konvergierenden Medienumgebungen. Reinhardt Fischer, München, pp 199–219

  102. Upshaw D, Babin LA (2010) Music downloading: competing against online piracy. International Journal of Business & Public Administration 7(1):14–26

  103. Venkatesh V (2000) Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research 11(4):342–365

  104. Venkatesh V, Thong JYL, Xu X (2012) Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly 36(1):157–178

  105. Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: toward a unified view. MIS Quarterly 27(3):425–478

  106. Wang C-C, Chen C-T, Yang S-C, Farn C-K (2009) Pirate or buy? The moderating effect of idolatry. Journal of Business Ethics 90(1):81–93

  107. Wetzels M, Odekerken-Schröder G, Van Oppen C (2009) Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Quarterly 33(1):177–195

  108. Woolley DJ (2010) The cynical pirate: how cynicsm effects music piracy. Academy of Information & Management Sciences Journal 13(1):31–43

  109. Zentner A (2006) Measuring the effect of file sharing on music purchases. Journal of Law and Economics 49(4):63–90

Download references

Author information



Corresponding author

Correspondence to Dipl.-Volksw. Thomas Wagner.

Additional information

Accepted after five revisions by Prof. Dr. Heinzl.

This article is also available in German in print and via Dörr J, Wagner T, Benlian A, Hess T (2013) Music as a Service als Alternative für Musikpiraten? Eine empirische Untersuchung zur Nutzungsintention von Streaming-Services für Musik. WIRTSCHAFTSINFORMATIK. doi: 10.1007/s11576-013-0387-x.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dörr, J., Wagner, T., Benlian, A. et al. Music as a Service as an Alternative to Music Piracy?. Bus Inf Syst Eng 5, 383–396 (2013).

Download citation


  • Music as a Service
  • MaaS
  • Digital goods
  • Music streaming
  • Music piracy
  • Business models
  • Theory of planned behavior