Skip to main content

Advertisement

Log in

Microstructure, wear and friction behavior of CoCrAlTaY-xCNTs composite coatings deposited by laser-induction hybrid cladding

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To improve the wear performance of CoCrAlYTa coating, part of the carbon nanotubes (CNTs) chemically reacted with Ta to form reinforcement phase (TaC), while the other CNTs were retained as lubrication phase. Subsequently, the CoCrAlYTa-xCNTs (x = 0, 1, 2, and 4; wt%) composite coatings were prepared by laser-induction hybrid cladding (LIHC), and the microstructure and wear resistance of coatings were systematically analyzed. Results show that the coatings are mainly composed of TaC, γ-(Co,Cr) and β-(Co,Cr)Al. As the CNTs content increases from 0 wt% to 4 wt%, the volume fraction of TaC increases from 13.11 vol% to 16.12 vol%. Meanwhile, the nano-hardness of γ-(Co,Cr) and β-(Co,Cr)Al are improved from 7.49 and 9.72 to 9.36 and 11.19 GPa, respectively. As a result, the microhardness of coating increases from HV 536.25 to HV 738.16, the wear rate decreases from 32.4 × 10–3 to 6.1 × 10–3 mg·m−1, and the average friction coefficient decreases from 0.55 to 0.44. The good wear performance of the coating is attributed to the formation of TaC and the existence of remained CNTs lubricant film.

Graphical abstract

摘要

本文利用“部分CNTs与Ta反应生成TaC, 而剩余CNTs充当润滑剂”的设计思想来改善CoCrAlTaY涂层摩擦学性能, 并通过激光感应复合熔覆技术成功制备CoCrAlTaY-CNTs复合涂层。结果表明, 部分CNTs分布在γ-(Co,Cr)和β-(Co,Cr)Al相中, 而部分CNTs被消耗与Ta反应形成TaC; 随着CNTs含量从0 wt%增至4 wt%, 涂层中TaC数量从13.11 vol%增至16.12 vol%, 涂层硬度从HV536.25增至HV 738.16, 磨损率从32.4 × 10−3降低到6.1 × 10–3 mg·m−1。研究成果对抗磨减磨MCrAlY涂层设计具有良好的参考价值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qi HY, Yang JS, Yang XG, Li SL, Ma LQ. Fatigue behavior of uncoated and MCrAlY-coated DS nickelbased superalloys pre-exposed in hot corrosion condition. Rare Met. 2018;37(11):936. https://doi.org/10.1007/s12598-016-0867-4.

    Article  CAS  Google Scholar 

  2. Kuhlenkötter B, Glaser T, Fahle S, Husmann S, Abdulgader M, Tillmann W. Investigation of compaction by ring rolling on thermal sprayed coatings. Proc Manuf. 2020;50:192. https://doi.org/10.1016/j.promfg.2020.08.036.

    Article  Google Scholar 

  3. Nickel H, Quadakkers W, Singheiser L. Analysis of corrosion layers on protective coatings and high temperature materials in simulated service environments of modern power plants using SNMS, SIMS, SEM, TEM, RBS and X-ray diffraction studies. Anal Bioanal Chem. 2002;374:581. https://doi.org/10.1007/s00216-001-1185-7.

    Article  CAS  PubMed  Google Scholar 

  4. Peng XM, Wu AR, Dong LJ, Tao YR, Gao WG, Zhou XL. Stability of NiCrAlY coating/titanium alloy system under pure thermal exposure. Rare Met. 2017;36(8):659. https://doi.org/10.1007/s12598-015-0529-y.

    Article  CAS  Google Scholar 

  5. Pereira J, Zambrano J, Licausi M, Tobar M, Amigo V. Tribology and high temperature friction wear behavior of MCrAlY laser cladding coatings on stainless steel. Wear. 2015;330:280. https://doi.org/10.1016/j.wear.2015.01.048.

    Article  CAS  Google Scholar 

  6. Shi PY, Wang WZ, Wan SH, Gao Q, Sun HW, Feng XC, Yi GW, Xie EQ, Wang QH. Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni-and NiCrAlY-based composite coatings. Surf Coat Tech. 2021;405: 126615. https://doi.org/10.1016/j.surfcoat.2020.126615.

    Article  CAS  Google Scholar 

  7. Cabral-Miramontes JA, Gaona-Tiburcio C, Almeraya-Calderón F, Estupiñan-Lopez FH, Pedraza-Basulto GK, Poblano-Salas CA. Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry. Int J Corros. 2014;2014:1. https://doi.org/10.1155/2014/703806.

    Article  CAS  Google Scholar 

  8. Pogrebnjaka AD, Prozorova MS, Kovalyova G, Kolisnichenko OV,Бepecнeв BM, Beresnev VM, Oyoshi K, Takeda Y. Kaverina ASA, Shypylenko, AP. Formation of multilayered Ti-Hf-Si-N/NbN/Al2O3 coatings with high physical and mechanical properties. Acta. Phys. Pol. 2013;123:513. http://essuir.sumdu.edu.ua/handle/123456789/33936

  9. Duan WB, Sun YH, Liu CH, Liu SH, Li YY, Ding CH, Ran G, Yu L. Study on the formation mechanism of the glaze film formed on Ni/Ag composites. Tribol Int. 2016;95:324. https://doi.org/10.1016/j.triboint.2015.11.031.

    Article  CAS  Google Scholar 

  10. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon. 1995;33(7):925. https://doi.org/10.1016/0008-6223(95)00021-5.

    Article  CAS  Google Scholar 

  11. Zhang H, Zhang DZ, Wang DY, Xu ZY, Yang Y, Zhang B. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 2022;41(9):3117. https://doi.org/10.1007/s12598-022-02031-z.

  12. Nakayama Y. Plasticity of carbon nanotubes: aiming at their use in nanosized devices. Jap J Appl Phys. 2007;46:5005. https://doi.org/10.1143/JJAP.46.5005.

    Article  CAS  ADS  Google Scholar 

  13. Bastwros MMH, Esawi AMK, Wifi A. Friction and wear behavior of Al–CNT composites. Wear. 2013;307(1–2):16. https://doi.org/10.1016/j.wear.2013.08.021.

    Article  CAS  Google Scholar 

  14. Umeda J, Fugetsu B, Nishida E, Miyaji H, Kondoh K. Friction behavior of network-structured CNT coating on pure titanium plate. Appl Surf Sci. 2015;357:721. https://doi.org/10.1016/j.apsusc.2015.09.063.

    Article  CAS  ADS  Google Scholar 

  15. Xie YJ, Yang YH, Wang MS, Hou J. MCrAlY/TaC metal matrix composite coatings produced by electrospark deposition. Acta Metall Sin. 2013;26:173. https://doi.org/10.1007/s40195-012-0236-8.

    Article  CAS  Google Scholar 

  16. Pereira JC, Zambrano JC, Afonso CRM, Amigo V. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route. Mater Charact. 2015;101:159. https://doi.org/10.1016/j.matchar.2015.02.001.

    Article  CAS  Google Scholar 

  17. Liu ZY, Gao W, Dahm KL, Wang FH. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings. Acta Mater. 1998;46(5):1691. https://doi.org/10.1016/S1359-6454(97)00346-7.

    Article  CAS  ADS  Google Scholar 

  18. Feizabadi A, Salehi Doolabi M, Sadrnezhaad SK, Rezaei M. Cyclic oxidation characteristics of HVOF thermal-sprayed NiCoCrAlY and CoNiCrAlY coatings at 1000 °C. J Alloy Compd. 2018;746:509. https://doi.org/10.1016/j.jallcom.2018.02.282.

    Article  CAS  Google Scholar 

  19. Hu Y, Cai CY, Wang YG, Yu HC, Zhou YC, Zhou GW. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings. Corros Sci. 2018;142:22. https://doi.org/10.1016/j.corsci.2018.06.035.

    Article  CAS  Google Scholar 

  20. Kadolkar PB, Watkins TR, De Hosson JTM, Kooi BJ, Dahotre NB. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Mater. 2007;55(4):1203. https://doi.org/10.1016/j.actamat.2006.07.049.

    Article  CAS  ADS  Google Scholar 

  21. Paul CP, Alemohammad H, Toyserkani E, Khajepour A, Corbin S. Cladding of WC–12 Co on low carbon steel using a pulsed Nd: YAG laser. Mater Sci Eng A. 2007;464(1–2):170. https://doi.org/10.1016/j.msea.2007.01.132.

    Article  CAS  Google Scholar 

  22. Zhou SF, Xiong Z, Lei JB, Dai XQ, Zhang TY, Wang CX. Influence of milling time on the microstructure evolution and oxidation behavior of NiCrAlY coatings by laser induction hybrid cladding. Corros Sci. 2016;103:105. https://doi.org/10.1016/j.corsci.2015.11.011.

    Article  Google Scholar 

  23. Yi YL, Long SL, Zhang R, Wu CY, Zhou SF. Influence of Al2O3 particles on the tribological properties of CoCrAlYTa coating produced by laser-induction hybrid cladding. Ceram Int. 2021;47(14):19434. https://doi.org/10.1016/j.ceramint.2021.03.280.

    Article  CAS  Google Scholar 

  24. Guo YJ, Li CG, Zeng M, Wang JQ, Deng PR, Wang Y. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding. Mater Chem Phys. 2020; 242:122522. https://doi.org/10.1016/j.matchemphys.2019.122522

    Article  CAS  Google Scholar 

  25. Basheer BV, George JJ, Siengchin S, Parameswaranpillai J. Polymer grafted carbon nanotubes-synthesis, properties, and applications: a review. Nano-Struct Nano-Objects. 2020;22: 100429. https://doi.org/10.1016/j.nanoso.2020.100429.

    Article  CAS  Google Scholar 

  26. Liu ZY, Xu SJ, Xiao BL, Xue P, Wang WG, Ma ZY. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos Part A: Appl Sci Manufac. 2012;43(12):2161. https://doi.org/10.1016/j.compositesa.2012.07.026.

    Article  CAS  Google Scholar 

  27. Zhao H, Li JH, Gao W, Huang DB, Chen G, Zhang MY. Microstructure, corrosion resistance, and wear resistance of in situ synthesized NiTi-based coating by laser induction hybrid rapid cladding. J. Mater. Eng. Perform. 2022;1. https://doi.org/10.1007/s11665-022-07453-5

  28. Mazumder MK, Wankum DL, Sims RA, Mountain JR, Chen H, Pettit P, Chaser T. Influence of powder properties on the performance of electrostatic coating process. J Electrostat. 1997;40:369. https://doi.org/10.1016/S0304-3886(97)00073-9.

    Article  Google Scholar 

  29. Cui WF, Dong YY, Bao YC, Qin GW. Improved corrosion resistance of dental Ti50Zr alloy with (TiZr) N coating in fluoridated acidic artificial saliva. Rare Met. 2021;40(10):2927. https://doi.org/10.1007/s12598-020-01668-y.

  30. Chen Y, Samant A, Balani K, Dahotre NB, Agarwal A. Effect of laser melting on plasma-sprayed aluminum oxide coatings reinforced with carbon nanotubes. Appl Phys A. 2009;94:861. https://doi.org/10.1007/s00339-008-4990-4.

    Article  CAS  ADS  Google Scholar 

  31. Yi YL, Xing JD, Wan MJ, Yu LL, Lu YF, Jian YX. Effect of Cu on microstructure, crystallography and mechanical properties in Fe-BC-Cu alloys. Mater Sci Eng A. 2017;708:274. https://doi.org/10.1016/j.msea.2017.09.135.

    Article  CAS  Google Scholar 

  32. Liang Y, Che Y, Liu X. The Thermodynamic data manual of inorganic materials. Shengyang: Dongbei University Press; 1994;442.

  33. Gao S, Hou JH, Yang F, Guo YG, Zhou LZ. Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700°C. J Alloy Compd. 2017;729:903. https://doi.org/10.1016/j.jallcom.2017.09.194.

    Article  CAS  Google Scholar 

  34. Malinovskis P, Fritze S, Riekehr L, Fieandt L, Cedervall J, Rehnlund D, Nyholm L, Lewin E, Jansson U. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater Des. 2018;149:51. https://doi.org/10.1016/j.matdes.2018.03.068.

    Article  CAS  Google Scholar 

  35. Wei JQ, Zhang XF, Wang KL. Carbon Nanotubes Macroscopically. Beijing: Tsinghua University Press; 2006. 5.

    Google Scholar 

  36. Wang YM, Zhuang W, Yang HP, Zhang CH. Determination of mechanical properties of pure zirconium processed by surface severe plastic deformation through nanoindentation. Rare Met. 2019;38(3):824. https://doi.org/10.1007/s12598-019-01302-6.

    Article  CAS  Google Scholar 

  37. Phani PS, Oliver WC, Pharr GM. Understanding and modeling plasticity error during nanoindentation with continuous stiffness measurement. Mater Des. 2020;194: 108923. https://doi.org/10.1016/j.matdes.2020.108923.

    Article  Google Scholar 

  38. Alhafez IA, Ruestes CJ, Bringa EM, Urbassek HM. Nanoindentation into a high-entropy alloy–an atomistic study. J Alloy Compd. 2019;803:618. https://doi.org/10.1016/j.jallcom.2019.06.277.

    Article  CAS  Google Scholar 

  39. George R, Kashyap KT, Rahul R, Yamdagni S. Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scripta Mater. 2005;53(10):1159. https://doi.org/10.1016/j.scriptamat.2005.07.022.

    Article  CAS  Google Scholar 

  40. Nam DH, Kim YK, Cha SI, Hong SH. Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon. 2012;50(13):4809. https://doi.org/10.1016/j.carbon.2012.06.005.

    Article  CAS  Google Scholar 

  41. Manjunatha K, Giridhara G, Jegadeeswaran N. Effect of carbon nanotube (CNT) additions in Cr3C2-25%NiCr coatings on microstructural and mechanical properties. Mater Today. 2020;45:15. https://doi.org/10.1016/j.matpr.2020.09.219.

    Article  CAS  Google Scholar 

  42. Jin JB, Zhao Y, Zhao SZ, Zhou SF. Effect of TiN content on microstructure and wear resistance of Ti-based composites produced by selective laser melting. Chinese J Lasers. 2019;46:1102013.

    Article  Google Scholar 

  43. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos Part B. 2015;77:402. https://doi.org/10.1016/j.compositesb.2015.03.014.

    Article  CAS  Google Scholar 

  44. Bolelli G, Vorkötter C, Lusvarghi L, Morelli S, Testa V, Vaben R. Performance of wear resistant MCrAlY coatings with oxide dispersion strengthening. Wear. 2020;444: 203116. https://doi.org/10.1016/j.wear.2019.203116.

    Article  CAS  Google Scholar 

  45. Wang WR, Hua M, Wei XC. Friction behavior of SUS 304 metastable austenitic stainless steel sheet against DC 53 die under the condition of friction coupling plastic deformation. Wear. 2011;271(7–8):1166. https://doi.org/10.1016/j.wear.2011.05.023.

    Article  CAS  Google Scholar 

  46. Xu ZS, Zhang QX, Shi XL, Zhai WZ, Zhu QS. Comparison of tribological properties of NiAl matrix composites containing graphite, carbon nanotubes, or graphene. J Mater Eng Perform. 2015;24:1926. https://doi.org/10.1007/s11665-015-1482-5.

    Article  CAS  Google Scholar 

  47. Ahn HS, Kwon OK. Tribological behaviour of plasma-sprayed chromium oxide coating. Wear. 1999;225:814. https://doi.org/10.1016/S0043-1648(98)00390-1.

    Article  Google Scholar 

  48. Puchy V, Hvizdos P, Dusza J, Kovac F, Inam F, Reece MJ. Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceram Int. 2013;39(5):5821. https://doi.org/10.1016/j.ceramint.2012.12.100.

    Article  CAS  Google Scholar 

  49. Hong W, Cai WJ, Wang SP, Tomovic MM. Mechanical wear debris feature, detection, and diagnosis: a review. Chinese J Aeronaut. 2018;31(5):867. https://doi.org/10.1016/j.cja.2017.11.016.

    Article  Google Scholar 

  50. Yi YL, Xing JD, Lu YF, Gao YM, Fu HG, Yu LL, Wan MJ, Zheng QL. Effect of normal load on two-body abrasive wear of an Fe-B-Cr-C based alloy with minor Cu and Ni additions. Wear. 2018;408:160. https://doi.org/10.1016/j.wear.2018.05.014.

    Article  CAS  Google Scholar 

  51. Cho MH, Ju J, Kim SJ, Jang H. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear. 2006;260(7–8):855. https://doi.org/10.1016/j.wear.2005.04.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52005217 and 51261026), the Basic and Applied Basic Research Fund Project of Guangdong Province in China (Nos. 2023A1515012684, 2021A1515010523 and 2020A1515110020), the University Research Platform and Research Projects of Guangdong Education Department (No. 2022ZDZX3003), the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials (No. 2022GXYSOF18), Guanxi Key Laboratory of Information Materials (No.221012-K), the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2021WNLOKF010) and the Fundamental Research Funds for the Central Universities (No. 21622110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Liang Yi or Lian-Xi Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SF., Long, Y., Yi, YL. et al. Microstructure, wear and friction behavior of CoCrAlTaY-xCNTs composite coatings deposited by laser-induction hybrid cladding. Rare Met. 43, 1815–1827 (2024). https://doi.org/10.1007/s12598-023-02534-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02534-3

Keywords

Navigation