Skip to main content

Advertisement

Log in

Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

This article has been updated

Abstract

In this rapidly developing society, it is always crucial to exploit new materials with suitable properties to meet specific application demands. Two-dimensional (2D) transition metal carbon/nitrides (MXenes) are a novel graphene-like material with exciting research potential in recent years. Among them, Ti3C2 debuts in a central position due to its relatively longer research history, mature synthetic process, and incredibly rich store of merits, such as good flexibility, large specific surface area, abundant termination groups, excellent electrical conductivity, and light-to-heat conversion ability. In this review, recent research progress on Ti3C2 MXene and its composites was updated mainly from three aspects, including their fundamentals, synthesis, and applications. It has been found that diverse applications of Ti3C2-based composites are inseparable and correlated with each other, which were linked by their unique physicochemical properties. In the end, a summary and a perspective on future opportunities and challenges of Ti3C2 were given to offer theoretical and technical guidelines for further investigation on MXene family.

摘要

在这个快速发展的社会中, 为了满足特定应用需求, 开发具有合适性能的新材料始终是至关重要的。近年来, 二维 (2D) 过渡金属碳/氮化物 (MXenes) 是一种新型的类石墨烯材料, 具有令人兴奋的研究潜力。其中, Ti3C2占据引领地位, 这是因为其拥有较长的研究历史、成熟的合成工艺以及极其丰富的优点, 例如良好的柔韧性、较大的比表面积、丰富的端基、优异的导电性和光热转换能力。本篇综述主要从基本性质、合成方法和应用三个方面对Ti3C2 MXene及其复合材料的最新研究进展进行了更新总结。经过分析得知, Ti3C2基复合材料在不同领域的应用通过其独特的物理化学性质而相互关联, 密不可分。最后, 文章对Ti3C2的未来机遇和挑战进行了总结和展望, 为进一步研究MXene家族材料提供了理论和技术指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [8]. Copyright 2012, American Chemical Society. e TEM and f AFM images of 2D Ti3C2Tx monolayers. Reproduced with permission from Ref. [16]. Copyright 2016, Wiley. g TEM and h HRTEM images of 0D Ti3C2Tx QDs. Reproduced with permission from Ref. [10]. Copyright 2018, The Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [7]. Copyright 2011, Wiley. b Etching Ti3AlC2 by XHF2 bifluoride, where X presents K+, Na+, and NH4+. Reproduced with permission from Ref. [97]. Copyright 2017, Elsevier. c Etching Ti3SiC2 by Lewis acids such as CuCl2, FeCl2, and AgCl through a high-temperature molten salt method. Reproduced with permission from Ref. [99]. Copyright 2020, Nature. d Etching Ti3AlC2 by alkali (NaOH) solution. Reproduced with permission from Ref. [100]. Copyright 2014, The Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [13]. Copyright 2019, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [16]. Copyright 2016, Wiley

Fig. 7

Reproduced with permission from Ref. [70]. Copyright 2018, Wiley. b SEM and AFM images of Ti3C2Tx nanosheets with corresponding statistical size distribution and relevant height profiles; c optical photographs of electrochemical etching process from 0 to 120 min

Fig. 8

Reproduced with permission from Ref. [17]. Copyright 2017, Wiley. b Formation mechanism of red phosphorus-Ti3C2Tx QDs composites via ball milling method. Reproduced with permission from Ref. [19]. Copyright 2018, Wiley. c Preparation process of Ti3C2Tx QDs by a micro-explosion strategy. Reproduced with permission from Ref. [20]. Copyright 2020, Wiley

Fig. 9

Reproduced with permission from Ref. [42]. Copyright 2020, The Royal Society of Chemistry. b Synthesis process of Ti3C2Tx/CNTs hybrids by a chemical vapor deposition method. Reproduced with permission from Ref. [41]. Copyright 2017, The Royal Society of Chemistry

Fig. 10

Reproduced with permission from Ref. [43]. Copyright 2016, Elsevier. b Formation diagram of MXene/rubber-based supramolecular elastomer network via esterification and latex self-assembly process. Reproduced with permission from Ref. [46]. Copyright 2020, American Chemical Society

Fig. 11

Reproduced with permission from Ref. [25]. Copyright 2019, American Chemical Society

Fig. 12

Reproduced with permission from Ref. [116]. Copyright 2016, American Chemical Society. c Schematic diagram of water evaporation over Ti3C2Tx MXene via its light-to-heat conversion property; d temperature change process of PVDF film and MXene-PVDF film under same condition of illumination and (insets) infrared camera photos of PVDF film and MXene-PVDF film. Reproduced with permission from Ref. [117]. Copyright 2017, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [118]. Copyright 2017, American Chemical Society. b Utilization of glucose oxidase (GOD) and iron oxide nanoparticles (IONPs) modified Ti3C2Tx nanoplatforms in synergistic photothermal-catalysis for anti-cancer application under near-infrared light. Reproduced with permission from Ref. [51]. Copyright 2019, American Chemical Society. c Simulated process of urea adsorption on 2D Ti3C2Tx MXenes dialysis from patient’s dialysate. Reproduced with permission from Ref. [26]. Copyright 2018, American Chemical Society

Fig. 14
Fig. 15

Reproduced with permission from Ref. [46]. Copyright 2020, American Chemical Society. b Relative current change of Ti3C2/NMC (natural microcapsule) flexible sensor when finger was bent at different angles. Reproduced with permission from Ref. [31]. Copyright 2019, American Chemical Society

Fig. 16

Reproduced with permission from Ref. [37]. Copyright 2017, Nature

Fig. 17

Reproduced with permission from Ref. [36]. Copyright 2018, Wiley

Fig. 18

Reproduced with permission from Ref. [131]. Copyright 2019, Elsevier

Fig. 19

Reproduced with permission from Ref. [58]. Copyright 2016, American Chemical Society. d SEM image of rice crust-like TiO2/Ti3C2 composite; e schematic illustration for electronic structure of Ti3C2 and (101) facets of anatase TiO2; f energy level diagram of TiO2/Ti3C2 composite before and after contact, and formation mechanism of Schottky junction for electrons trapping. Reproduced with permission from Ref. [50]. Copyright 2018, Elsevier

Similar content being viewed by others

Change history

  • 01 November 2022

    This article was revised for minor typos in the publication

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. https://doi.org/10.1126/science.1102896.

    Article  CAS  Google Scholar 

  2. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B. Epitaxial growth of a silicene sheet. Appl Phys Lett. 2010;97(22):223109. https://doi.org/10.1063/1.3524215.

    Article  CAS  Google Scholar 

  3. Dávila M, Xian L, Cahangirov S, Rubio A, Le Lay G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys. 2014;16(9):095002. https://doi.org/10.1088/1367-2630/16/9/095002.

    Article  CAS  Google Scholar 

  4. Liu H, Neal A, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8(4):4033. https://doi.org/10.1021/nn501226z.

    Article  CAS  Google Scholar 

  5. Ataca C, Şahin H, Ciraci S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C. 2012;116(16):8983. https://doi.org/10.1021/jp212558p.

    Article  CAS  Google Scholar 

  6. Coleman JN, Lotya M, O’neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, Mccomb DW, Nellist PD, Nicolosi V. Liquid exfoliation of layered materials. Science. 2011;331(6017):568. https://doi.org/10.1126/science.1194975.

    Article  CAS  Google Scholar 

  7. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248. https://doi.org/10.1002/adma.201102306.

    Article  CAS  Google Scholar 

  8. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322. https://doi.org/10.1021/nn204153h.

    Article  CAS  Google Scholar 

  9. Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B, Hultman L, Kent P, Gogotsi Y, Barsoum M. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015;9(10):9507. https://doi.org/10.1021/acsnano.5b03591.

    Article  CAS  Google Scholar 

  10. Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(14):5109. https://doi.org/10.1039/c7cs00838d.

    Article  CAS  Google Scholar 

  11. Naguib M, Mochalin V, Barsoum M, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992. https://doi.org/10.1002/adma.201304138.

    Article  CAS  Google Scholar 

  12. Mashtalir O, Naguib M, Mochalin VN, Dall’agnese Y, Heon M, Barsoum MW, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716. https://doi.org/10.1038/ncomms2664.

    Article  CAS  Google Scholar 

  13. Han F, Luo S, Xie L, Zhu J, Wei W, Chen X, Liu F, Chen W, Zhao J, Dong L, Yu K, Zeng X, Rao F, Wang L, Huang Y. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl Mater Interfaces. 2019;11(8):8443. https://doi.org/10.1021/acsami.8b22339.

    Article  CAS  Google Scholar 

  14. Cai X, Luo Y, Liu B, Cheng H. Preparation of 2D material dispersions and their applications. Chem Soc Rev. 2018;47(16):6224. https://doi.org/10.1039/c8cs00254a.

    Article  CAS  Google Scholar 

  15. Yang C, Tan QY, Li Q, Zhou J, Fand JJ, Lie B, Suna J, Lv KL. Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea. Appl Catal B Environ. 2020;268:118738. https://doi.org/10.1016/j.apcatb.2020.118738.

    Article  CAS  Google Scholar 

  16. Lipatov A, Alhabeb M, Lukatskaya M, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2(12):1600255. https://doi.org/10.1002/aelm.201600255.

    Article  CAS  Google Scholar 

  17. Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, Huang Y, Huang Y, Deng Q, Zhou J, Du S, Huang Q, Zhi C. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. 2017;29(15):1604847. https://doi.org/10.1002/adma.201604847.

    Article  CAS  Google Scholar 

  18. Xu G, Niu Y, Yang X, Jin Z, Wang Y, Xu Y, Niu H. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv Opt Mater. 2018;6(24):1800951. https://doi.org/10.1002/adom.201800951.

    Article  CAS  Google Scholar 

  19. Zhang T, Jiang X, Li G, Yao Q, Lee J. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx(MXene) nanodot composite. ChemNanoMat. 2018;4(1):56. https://doi.org/10.1002/cnma.201700232.

    Article  CAS  Google Scholar 

  20. Li XS, Liu F, Huang DP, Xue N, Dang YY, Zhang MQ, Zhang LL, Li B, Liu D, Wang L, Liu H, Tao XT. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Adv Funct Mater. 2020;30(24):2000308. https://doi.org/10.1002/adfm.202000308.

    Article  CAS  Google Scholar 

  21. Tang R, Xiong S, Gong D, Deng Y, Wang Y, Su L, Ding C, Yang L, Liao C. Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Appl Mater Interfaces. 2020;12(51):56663. https://doi.org/10.1021/acsami.0c12905.

    Article  CAS  Google Scholar 

  22. Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev. 2019;48(1):72. https://doi.org/10.1039/c8cs00324f.

    Article  CAS  Google Scholar 

  23. Wang H, Wu Y, Zhang J, Li G, Huang H, Zhang X, Jiang Q. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater Lett. 2015;160(1):537. https://doi.org/10.1016/j.matlet.2015.08.046.

    Article  CAS  Google Scholar 

  24. Li ZP, Huang WX, Liu JX, Lv KL, Li Q. Embedding CdS@Au into ultrathin Ti3-xC2Ty to build dual Schottky barriers for photocatalytic H2 production. ACS Catal. 2021;11(14):8510. https://doi.org/10.1021/acscatal.1c02018.

    Article  CAS  Google Scholar 

  25. Zhao D, Chen Z, Yang W, Liu S, Zhang X, Yu Y, Cheong WC, Zheng L, Ren F, Ying G, Cao X, Wang D, Peng Q, Wang G, Chen C. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J Am Chem Soc. 2019;141(9):4086. https://doi.org/10.1021/jacs.8b13579.

    Article  CAS  Google Scholar 

  26. Meng F, Seredych M, Chen C, Gura V, Mikhalovsky S, Sandeman S, Ingavle G, Ozulumba T, Miao L, Anasori B, Gogotsi Y. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano. 2018;12(10):10518. https://doi.org/10.1021/acsnano.8b06494.

    Article  CAS  Google Scholar 

  27. Wang H, Zhao R, Qin J, Hu H, Fan X, Cao X, Wang D. MIL-100(Fe)/Ti3C2 MXene as a Schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities. ACS Appl Mater Interfaces. 2019;11(47):44249. https://doi.org/10.1021/acsami.9b14793.

    Article  CAS  Google Scholar 

  28. Zhao Y, Zuo G, Wang Y, Teo WL, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew Chem Int Ed Engl. 2020;59(28):11287. https://doi.org/10.1002/anie.202002136.

    Article  CAS  Google Scholar 

  29. An H, Habib T, Shah S, Gao H, Patel A, Echols I, Zhao X, Radovic M, Green MJ, Lutkenhaus JL. Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl Nano Mater. 2019;2(2):948. https://doi.org/10.1021/acsanm.8b02265.

    Article  CAS  Google Scholar 

  30. Cao M, Cai Y, He P, Shu J, Cao W, Yuan J. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J. 2019;359:1265. https://doi.org/10.1016/j.cej.2018.11.051.

    Article  CAS  Google Scholar 

  31. Wang K, Lou Z, Wang L, Zhao L, Zhao S, Wang D, Han W, Jiang K, Shen G. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano. 2019;13(8):9139. https://doi.org/10.1021/acsnano.9b03454.

    Article  CAS  Google Scholar 

  32. Wang Z, Yu K, Gong S, Mao H, Huang R, Zhu Z. Cu3BiS3/MXenes with excellent solar-thermal conversion for continuous and efficient seawater desalination. ACS Appl Mater Interfaces. 2021;13(14):16246. https://doi.org/10.1021/acsami.0c22761.

    Article  CAS  Google Scholar 

  33. Peng C, Wang H, Yu H, Peng F. (111) TiO2-x /Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater Res Bull. 2017;89:16. https://doi.org/10.1016/j.materresbull.2016.12.049.

    Article  CAS  Google Scholar 

  34. Peng C, Wei P, Li X, Liu Y, Cao Y, Wang H, Yu H, Peng F, Zhang L, Zhang B, Lv K. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy. 2018;53:97. https://doi.org/10.1016/j.nanoen.2018.08.040.

    Article  CAS  Google Scholar 

  35. Wang H, Sun Y, Wu Y, Tu W, Wu S, Yuan X, Zeng G, Xu ZJ, Li S, Chew JW. Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl Catal B Environ. 2019;245:290. https://doi.org/10.1016/j.apcatb.2018.12.051.

    Article  CAS  Google Scholar 

  36. Cao S, Shen B, Tong T, Fu J, Yu J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater. 2018;28(21):1800136. https://doi.org/10.1002/adfm.201800136.

    Article  CAS  Google Scholar 

  37. Ran J, Gao G, Li F, Ma T, Du A, Qiao S. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun. 2017;8:13907. https://doi.org/10.1038/ncomms13907.

    Article  CAS  Google Scholar 

  38. Yang Q, Huang Z, Li X, Liu Z, Li H, Liang G, Wang D, Huang Q, Zhang S, Chen S, Zhi C. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano. 2019;13(7):8275. https://doi.org/10.1021/acsnano.9b03650.

    Article  CAS  Google Scholar 

  39. Zeng ZP, Yan YB, Chen J, Zan P, Tian QH, Chen P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater. 2019;29(2):1806500. https://doi.org/10.1002/adfm.201806500.

    Article  CAS  Google Scholar 

  40. Lu Y, Fan DQ, Xu HL, Min HH, Lu CH, Lin ZX, Yang XF. Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification. Sol RRL. 2020;4(9):2000232. https://doi.org/10.1002/solr.202000232.

    Article  CAS  Google Scholar 

  41. Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L. Ti3C2 MXenes modified with in-situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C. 2017;5(16):4068. https://doi.org/10.1039/C6TC05226F.

    Article  CAS  Google Scholar 

  42. Gan R, Liu Y, Yang N, Tong C, Deng M, Dong Q, Tang X, Fu N, Li C, Wei Z. Lithium electrodeposited on lithiophilic LTO/Ti3C2 substrate as a dendrite-free lithium metal anode. J Mater Chem A. 2020;8(39):20650. https://doi.org/10.1039/d0ta07552c.

    Article  CAS  Google Scholar 

  43. Xie X, Zhao M, Anasori B, Maleski K, Ren C, Li J, Byles B, Pomerantseva E, Wang G, Gogotsi Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 2016;26:513. https://doi.org/10.1016/j.nanoen.2016.06.005.

    Article  CAS  Google Scholar 

  44. Wu G, Li T, Wang Z, Li M, Wang B, Dong A. Molecular ligand-mediated assembly of multicomponent nanosheet superlattices for compact capacitive energy storage. Angew Chem Int Ed Engl. 2020;59(46):20628. https://doi.org/10.1002/anie.202009086.

    Article  CAS  Google Scholar 

  45. Wang X, Wang J, Qin J, Xie X, Yang R, Cao M. Surface charge engineering for covalently assembling three-dimensional MXene network for all-climate sodium ion batteries. ACS Appl Mater Interfaces. 2020;12(35):39181. https://doi.org/10.1021/acsami.0c10605.

    Article  CAS  Google Scholar 

  46. Guo Q, Zhang X, Zhao F, Song Q, Su G, Tan Y, Tao Q, Zhou T, Yu Y, Zhou Z, Lu C. Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano. 2020;14(3):2788. https://doi.org/10.1021/acsnano.9b09802.

    Article  CAS  Google Scholar 

  47. Weng G, Li J, Alhabeb M, Karpovich C, Wang H, Lipton J, Maleski K, Kong J, Shaulsky E, Elimelech M, Gogotsi Y, Taylor AD. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv Funct Mater. 2018;28(44):1803360. https://doi.org/10.1002/adfm.201803360.

    Article  CAS  Google Scholar 

  48. He F, Zhu BC, Cheng B, Yu JG, Ho W, Macyk W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B Environ. 2020;272:119006. https://doi.org/10.1016/j.apcatb.2020.119006.

    Article  CAS  Google Scholar 

  49. Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q, Li J, Tan H, Liu L, Fan D, Zhang H. Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl Mater Interfaces. 2018;10(33):27631. https://doi.org/10.1021/acsami.8b08314.

    Article  CAS  Google Scholar 

  50. Low J, Zhang L, Tong T, Shen B, Yu J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal. 2018;361:255. https://doi.org/10.1016/j.jcat.2018.03.009.

    Article  CAS  Google Scholar 

  51. Liang R, Li Y, Huo M, Lin H, Chen Y. Triggering sequential catalytic fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy. ACS Appl Mater Interfaces. 2019;11(46):42917. https://doi.org/10.1021/acsami.9b13598.

    Article  CAS  Google Scholar 

  52. Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces. 2016;8(34):22280. https://doi.org/10.1021/acsami.6b08089.

    Article  CAS  Google Scholar 

  53. Shi H, Zhang CJ, Lu P, Dong Y, Wen P, Wu ZS. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano. 2019;13(12):14308. https://doi.org/10.1021/acsnano.9b07710.

    Article  CAS  Google Scholar 

  54. Chang T, Zhang T, Yang H, Li K, Tian Y, Lee J, Chen P. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano. 2018;12(8):8048. https://doi.org/10.1021/acsnano.8b02908.

    Article  CAS  Google Scholar 

  55. Ma C, Cao WT, Zhang W, Ma MG, Sun WM, Zhang J, Chen F. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chem Eng J. 2021;403:126438. https://doi.org/10.1016/j.cej.2020.126438.

    Article  CAS  Google Scholar 

  56. Li ZM, Dall’agnese Y, Guo J, Huang HF, Liang XQ, Xu SK. Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a flex sensor. J Mater Chem A. 2020;8(32):16649. https://doi.org/10.1039/d0ta05710j.

    Article  CAS  Google Scholar 

  57. Zhou Z, Song Q, Huang B, Feng S, Lu C. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano. 2021;15:12405. https://doi.org/10.1021/acsnano.1c04526.

    Article  CAS  Google Scholar 

  58. Peng C, Yang X, Li Y, Yu H, Wang H, Peng F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces. 2016;8(9):6051. https://doi.org/10.1021/acsami.5b11973.

    Article  CAS  Google Scholar 

  59. Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C. 2017;5(10):2488. https://doi.org/10.1039/c7tc00140a.

    Article  CAS  Google Scholar 

  60. Zhao M, Ren C, Ling Z, Lukatskaya M, Zhang C, Van Aken K, Barsoum M, Gogotsi Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater. 2015;27(2):339. https://doi.org/10.1002/adma.201404140.

    Article  CAS  Google Scholar 

  61. Lin H, Chen L, Lu X, Yao H, Chen Y, Shi J. Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Sci China Mater. 2018;62(5):662. https://doi.org/10.1007/s40843-018-9378-3.

    Article  CAS  Google Scholar 

  62. Wang Z, Xuan J, Zhao Z, Li Q, Geng F. Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano. 2017;11(11):11559. https://doi.org/10.1021/acsnano.7b06476.

    Article  CAS  Google Scholar 

  63. Wang XL, Wang LB, He Y, Wu M, Zhou AG. The effect of two-dimensional d-Ti3C2 on the mechanical and thermal conductivity properties of thermoplastic polyurethane composites. Polym Compos. 2019;41(1):350. https://doi.org/10.1002/pc.25374.

    Article  CAS  Google Scholar 

  64. Feng YF, Zhou FR, Deng QI, Peng C. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram Int. 2020;46(6):8320. https://doi.org/10.1016/j.ceramint.2019.12.063.

    Article  CAS  Google Scholar 

  65. Tao N, Liu YD, Wu YJ, Li XL, Li J, Sun XY, Chen S, Liu Y. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of NIR-II photothermal ablation and vascular disruption. ACS Appl Bio Mater. 2020;3(7):4531. https://doi.org/10.1021/acsabm.0c00465.

    Article  CAS  Google Scholar 

  66. Wang X, Shen X, Gao Y, Wang Z, Yu R, Chen L. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J Am Chem Soc. 2015;137(7):2715. https://doi.org/10.1021/ja512820k.

    Article  CAS  Google Scholar 

  67. Li Q, Zhong B, Zhang W, Jia Z, Jia D, Qin S, Wang J, Razal JM, Wang X. Ti3C2 MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale. 2019;11(31):14712. https://doi.org/10.1039/c9nr03661j.

    Article  CAS  Google Scholar 

  68. Sheng XX, Li SH, Huang HW, Zhao YF, Chen Y, Zhang L, Xie DL. Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets. J Mater Sci. 2020;56(6):4212. https://doi.org/10.1007/s10853-020-05525-2.

    Article  CAS  Google Scholar 

  69. Ng VM, Huang H, Zhou K, Lee P, Que W, Xu JZ, Kong L. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A. 2017;5(7):3039. https://doi.org/10.1039/C6TA06772G.

    Article  CAS  Google Scholar 

  70. Yang S, Zhang P, Wang F, Ricciardulli A, Lohe M, Blom PWM, Feng X. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed Engl. 2018;57(47):15491. https://doi.org/10.1002/anie.201809662.

    Article  CAS  Google Scholar 

  71. Lukatskaya M, Kota S, Lin Z, Zhao M, Shpigel N, Levi M, Halim J, Taberna P, Barsoum M, Simon P, Gogotsi Y. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017;2:17105. https://doi.org/10.1038/nenergy.2017.105.

    Article  CAS  Google Scholar 

  72. Zhang JZ, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han MK, Yang WR, Liu JQ, Wang XG, Gogotsi Y, Razal JM. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. 2020;32(23):e2001093. https://doi.org/10.1002/adma.202001093.

    Article  CAS  Google Scholar 

  73. De S, King PJ, Lotya M, O’neill A, Doherty EM, Hernandez Y, Duesberg GS, Coleman JN. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small. 2010;6(3):458. https://doi.org/10.1002/smll.200901162.

    Article  CAS  Google Scholar 

  74. Hantanasirisakul K, Alhabeb M, Lipatov A, Maleski K, Anasori B, Salles P, Ieosakulrat C, Pakawatpanurut P, Sinitskii A, May SJ, Gogotsi Y. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem Mater. 2019;31(8):2941. https://doi.org/10.1021/acs.chemmater.9b00401.

    Article  CAS  Google Scholar 

  75. Hart JL, Hantanasirisakul K, Lang AC, Anasori B, Pinto D, Pivak Y, Van Omme JT, May SJ, Gogotsi Y, Taheri ML. Control of MXenes’ electronic properties through termination and intercalation. Nat Commun. 2019;10:1. https://doi.org/10.1038/s41467-018-08169-8.

    Article  CAS  Google Scholar 

  76. Muckley ES, Naguib M, Wang HW, Vlcek L, Osti NC, Sacci RL, Sang XH, Unocic RR, Xie Y, Tyagi M, Mamontov E, Page KL, Kent PRC, Nanda J, Ivanov IN. Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano. 2017;11(11):11118. https://doi.org/10.1021/acsnano.7b05264.

    Article  CAS  Google Scholar 

  77. Halim J, Lukatskaya M, Cook K, Lu J, Smith C, Naslund L, May S, Hultman L, Gogotsi Y, Eklund P, Barsoum M. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26(7):2374. https://doi.org/10.1021/cm500641a.

    Article  CAS  Google Scholar 

  78. Bergmann G. Quantitative analysis of weak localization in thin Mg films by magnetoresistance measurements. Phys Rev B. 1982;25(4):2937. https://doi.org/10.1103/PhysRevB.25.2937.

    Article  CAS  Google Scholar 

  79. Cai T, Wang L, Liu Y, Zhang S, Dong W, Chen H, Yi X, Yuan J, Xia X, Liu C, Luo S. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B Environ. 2018;239:545. https://doi.org/10.1016/j.apcatb.2018.08.053.

    Article  CAS  Google Scholar 

  80. Singh B, Bahadur R, Neekhra S, Gandhi M, Srivastava R. Hydrothermal-assisted synthesis and stability of multifunctional MXene nanobipyramids: structural, chemical, and optical evolution. ACS Appl Mater Interfaces. 2021;13(2):3011. https://doi.org/10.1021/acsami.0c18712.

    Article  CAS  Google Scholar 

  81. Zhang Q, Yi G, Fu Z, Yu H, Chen S, Quan X. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano. 2019;13(11):13196. https://doi.org/10.1021/acsnano.9b06180.

    Article  CAS  Google Scholar 

  82. Wang QW, Zhang HB, Liu J, Zhao S, Xie X, Liu LX, Yang R, Koratkar N, Yu ZZ. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater. 2019;29(7):1806819. https://doi.org/10.1002/adfm.201806819.

    Article  CAS  Google Scholar 

  83. Zhao JQ, Yang YW, Yang CH, Tian YP, Han Y, Liu J, Yin XT, Que WX. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J Mater Chem A. 2018;6(33):16196. https://doi.org/10.1039/c8ta05569f.

    Article  CAS  Google Scholar 

  84. Liu J, Zhang H, Sun R, Liu Y, Liu Z, Zhou A, Yu Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater. 2017;29(38):1702367. https://doi.org/10.1002/adma.201702367.

    Article  CAS  Google Scholar 

  85. Zhao XF, Vashisth A, Prehn E, Sun WM, Shah SA, Habib T, Chen YX, Tan ZY, Lutkenhaus JL, Radovic M, Green MJ. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1(2):513. https://doi.org/10.1016/j.matt.2019.05.020.

    Article  Google Scholar 

  86. Maleski K, Mochalin VN, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater. 2017;29(4):1632. https://doi.org/10.1021/acs.chemmater.6b04830.

    Article  CAS  Google Scholar 

  87. Zhang J, Kong N, Hegh D, Usman KAS, Guan G, Qin S, Jurewicz I, Yang W, Razal JM. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl Mater Interfaces. 2020;12(30):34032. https://doi.org/10.1021/acsami.0c06728.

    Article  CAS  Google Scholar 

  88. Zhang C, Pinilla S, Mcevoy N, Cullen C, Anasori B, Long E, Park S-H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X, Duesberg GS, Gogotsi Y, Nicolosi V. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29(11):4848. https://doi.org/10.1021/acs.chemmater.7b00745.

    Article  CAS  Google Scholar 

  89. Habib T, Zhao X, Shah SA, Chen Y, Sun W, An H, Lutkenhaus JL, Radovic M, Green MJ. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. NPJ 2D Mater Appl. 2019;3(1):1. https://doi.org/10.1038/s41699-019-0089-3.

    Article  Google Scholar 

  90. Yan J, Ma Y, Zhang C, Li X, Liu W, Yao X, Yao S, Luo S. Polypyrrole-MXene coated textile-based flexible energy storage device. Rsc Adv. 2018;8(69):39742. https://doi.org/10.1039/c8ra08403c.

    Article  CAS  Google Scholar 

  91. Lyu B, Kim M, Jing H, Kang J, Qian C, Lee S, Cho JH. Large-area MXene electrode array for flexible electronics. ACS Nano. 2019;13(10):11392. https://doi.org/10.1021/acsnano.9b04731.

    Article  CAS  Google Scholar 

  92. Firestein KL, Von Treifeldt JE, Kvashnin DG, Fernando JFS, Zhang C, Kvashnin AG, Podryabinkin EV, Shapeev AV, Siriwardena DP, Sorokin PB, Golberg D. Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations. Nano Lett. 2020;20:5900. https://doi.org/10.1021/acs.nanolett.0c01861.

    Article  CAS  Google Scholar 

  93. Akhlaghi M, Tayebifard SA, Salahi E, Shahedi Asl M, Schmidt G. Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture. Ceram Int. 2018;44(8):9671. https://doi.org/10.1016/j.ceramint.2018.02.195.

    Article  CAS  Google Scholar 

  94. Chen JX, Li ZL, Ni FL, Ouyang WX, Fang XS. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater Horiz. 2020;7:1828. https://doi.org/10.1039/d0mh00394h.

    Article  CAS  Google Scholar 

  95. Abdolhosseinzadeh S, Jiang XT, Zhang H, Qiu JS, Zhang CF. Perspectives on solution processing of two-dimensional MXenes. Mater Today. 2021;48:214. https://doi.org/10.1016/j.mattod.2021.02.010.

    Article  CAS  Google Scholar 

  96. Wang L, Zhang H, Wang B, Shen C, Zhang C, Hu Q, Zhou A, Liu B. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett. 2016;12(5):702. https://doi.org/10.1007/s13391-016-6088-z.

    Article  CAS  Google Scholar 

  97. Feng A, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des. 2017;114(15):161. https://doi.org/10.1016/j.matdes.2016.10.053.

    Article  CAS  Google Scholar 

  98. Xiu LY, Wang ZY, Qiu JS. General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Met. 2020;39(11):1237. https://doi.org/10.1007/s12598-020-01488-0.

    Article  CAS  Google Scholar 

  99. Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson POA, Eklund P, Hultman L, Li M, Chen K, Zha XH, Du S, Rozier P, Chai Z, Raymundo-Pinero E, Taberna PL, Simon P, Huang Q. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19:894. https://doi.org/10.1038/s41563-020-0657-0.

    Article  CAS  Google Scholar 

  100. Xie X, Xue Y, Li L, Chen S, Nie Y, Ding W, Wei Z. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale. 2014;6(19):11035. https://doi.org/10.1039/C4NR02080D.

    Article  CAS  Google Scholar 

  101. Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD, Pumera M. MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance. Anal Chem. 2020;92(3):2452. https://doi.org/10.1021/acs.analchem.9b03634.

    Article  CAS  Google Scholar 

  102. Li N, Jiang Y, Zhou C, Xiao Y, Meng B, Wang Z, Huang D, Xing C, Peng Z. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl Mater Interfaces. 2019;11(41):38116. https://doi.org/10.1021/acsami.9b12168.

    Article  CAS  Google Scholar 

  103. Ghidiu M, Lukatskaya M, Zhao M, Gogotsi Y, Barsoum M. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature. 2014;516(7529):78. https://doi.org/10.1038/nature13970.

    Article  CAS  Google Scholar 

  104. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, Dhingra S. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthcare Mater. 2019;8(16):e1900569. https://doi.org/10.1002/adhm.201900569.

    Article  CAS  Google Scholar 

  105. Shao BB, Liu ZF, Zeng GM, Wang H, Liang QH, He QY, Cheng M, Zhou CY, Jiang LB, Song B. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A. 2020;8(16):7508. https://doi.org/10.1039/d0ta01552k.

    Article  CAS  Google Scholar 

  106. Liu D, Zhang G, Ji Q, Zhang Y, Li J. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate. ACS Appl Mater Interfaces. 2019;11(29):25758. https://doi.org/10.1021/acsami.9b02511.

    Article  CAS  Google Scholar 

  107. Su T, Hood ZD, Naguib M, Bai L, Luo S, Rouleau CM, Ivanov IN, Ji H, Qin Z, Wu Z. Monolayer Ti3C2Tx as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl Energy Mater. 2019;2(7):4640. https://doi.org/10.1021/acsaem.8b02268.

    Article  CAS  Google Scholar 

  108. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459. https://doi.org/10.1007/s12598-020-01602-2.

    Article  CAS  Google Scholar 

  109. Jiao S, Liu L. Friction-induced enhancements for photocatalytic degradation of MoS2@Ti3C2 nanohybrid. Ind Eng Chem Res. 2019;58(39):18141. https://doi.org/10.1021/acs.iecr.9b03680.

    Article  CAS  Google Scholar 

  110. Chen Y, Wu G, Chen B, Qu H, Jiao T, Li Y, Ge C, Zhang C, Liang L, Zeng X, Cao X, Wang Q, Li H. Self-assembly of a purely covalent cage with homochirality by imine formation in water. Angew Chem Int Ed Engl. 2021;60(34):18815. https://doi.org/10.1002/anie.202106428.

    Article  CAS  Google Scholar 

  111. Hu XY, Yan LL, Wang YM, Xu M. Ice segregation induced self-assembly of salecan and grapheme oxide nanosheets into ion-imprinted aerogel with superior selectivity for cadmium (II) capture. Chem Eng J. 2021;417:128106. https://doi.org/10.1016/j.cej.2020.128106.

    Article  CAS  Google Scholar 

  112. Guo J, Zhao Y, Liu A, Ma T. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim Acta. 2019;305:164. https://doi.org/10.1016/j.electacta.2019.03.025.

    Article  CAS  Google Scholar 

  113. Li Z, Cui Y, Wu Z, Milligan C, Zhou L, Mitchell G, Xu B, Shi E, Miller JT, Ribeiro FH, Wu Y. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat Catal. 2018;1(5):349. https://doi.org/10.1038/s41929-018-0067-8.

    Article  CAS  Google Scholar 

  114. Ying Y, Liu Y, Wang X, Mao Y, Cao W, Hu P, Peng X. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl Mater Interfaces. 2015;7(3):1795. https://doi.org/10.1021/am5074722.

    Article  CAS  Google Scholar 

  115. Zhang Z, Li H, Zou G, Fernandez C, Liu B, Zhang Q, Hu J, Peng Q. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain Chem Eng. 2016;4(12):6763. https://doi.org/10.1021/acssuschemeng.6b01698.

    Article  CAS  Google Scholar 

  116. Han M, Yin X, Wu H, Hou Z, Song C, Li X, Zhang L, Cheng L. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Interfaces. 2016;8(32):21011. https://doi.org/10.1021/acsami.6b06455.

    Article  CAS  Google Scholar 

  117. Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano. 2017;11(4):3752. https://doi.org/10.1021/acsnano.6b08415.

    Article  CAS  Google Scholar 

  118. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces. 2017;9(46):40077. https://doi.org/10.1021/acsami.7b13421.

    Article  CAS  Google Scholar 

  119. Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T, Geng F. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed. 2016;55:14569. https://doi.org/10.1002/anie.201606643.

    Article  CAS  Google Scholar 

  120. Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene). Adv Mater. 2018;30(4):1703284. https://doi.org/10.1002/adma.201703284.

    Article  CAS  Google Scholar 

  121. Li M, Li X, Qin G, Luo K, Lu J, Li Y, Liang G, Huang Z, Zhou J, Hultman L, Eklund P, Persson POA, Du S, Chai Z, Zhi C, Huang Q. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano. 2021;15(1):1077. https://doi.org/10.1021/acsnano.0c07972.

    Article  CAS  Google Scholar 

  122. Cheng L, Li X, Zhang H, Xiang Q. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J Phys Chem Lett. 2019;10(12):3488. https://doi.org/10.1021/acs.jpclett.9b00736.

    Article  CAS  Google Scholar 

  123. You Z, Liao Y, Li X, Fan J, Xiang Q. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale. 2021;13(21):9463. https://doi.org/10.1039/d1nr02224e.

    Article  CAS  Google Scholar 

  124. Yang Y, Zhang D, Xiang Q. Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale. 2019;11(40):18797. https://doi.org/10.1039/c9nr07242j.

    Article  CAS  Google Scholar 

  125. Ding M, Xiao R, Zhao C, Bukhvalov D, Chen Z, Xu H, Tang H, Xu J, Yang X. Evidencing interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol RRL. 2020;5(2):2000414. https://doi.org/10.1002/solr.202000414.

    Article  CAS  Google Scholar 

  126. Ding M, Han C, Yuan Y, Xu J, Yang X. Advances and promises of 2D MXenes as cocatalysts for artificial photosynthesis. Sol RRL. 2021;5(12):2100603. https://doi.org/10.1002/solr.202100603.

    Article  CAS  Google Scholar 

  127. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B Environ. 2020;268:118382. https://doi.org/10.1016/j.apcatb.2019.118382.

    Article  CAS  Google Scholar 

  128. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem. 2009;1(1):37. https://doi.org/10.1038/nchem.121.

    Article  CAS  Google Scholar 

  129. Jiao Y, Zheng Y, Jaroniec M, Qiao S. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060. https://doi.org/10.1039/c4cs00470a.

    Article  CAS  Google Scholar 

  130. Sang X, Xie Y, Lin M, Alhabeb M, Van Aken K, Gogotsi Y, Kent P, Xiao K, Unocic R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 2016;10(10):9193. https://doi.org/10.1021/acsnano.6b05240.

    Article  CAS  Google Scholar 

  131. Qin J, Hu X, Li X, Yin Z, Liu B, Lam K-H. 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy. 2019;61:27. https://doi.org/10.1016/j.nanoen.2019.04.028.

    Article  CAS  Google Scholar 

  132. Liao Y, Qian J, Xie G, Han Q, Dang W, Wang Y, Lv L, Zhao S, Luo L, Zhang W, Jiang H-Y, Tang J. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Appl Catal B Environ. 2020;273(15):119054. https://doi.org/10.1016/j.apcatb.2020.119054.

    Article  CAS  Google Scholar 

  133. Sun B, Qiu P, Liang Z, Xue Y, Zhang X, Yang L, Cui H, Tian J. The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem Eng J. 2021;406(15):127177. https://doi.org/10.1016/j.cej.2020.127177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21972171) and Hubei Provincial Natural Science Foundation, China (No. 2021CFA022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WX., Li, ZP., Li, DD. et al. Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Met. 41, 3268–3300 (2022). https://doi.org/10.1007/s12598-022-02058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02058-2

Keywords

Navigation