Skip to main content
Log in

Enhanced ethanol oxidation over Pd nanoparticles supported porous graphene-doped MXene using polystyrene particles as sacrificial templates

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Fabrication of superior catalytic performance palladium-based catalysts with affordable cost is the key to develop direct ethanol fuel cell. Herein, Pd-decorated three-dimensional (3D) porous constructed from graphene oxide (GO) and MXene combining with polystyrene (PS) particles as sacrificial templates (Pd/GO-MXene-PS) to elevate the catalytic performance for ethanol oxidation was proposed. The 3D porous interconnected structure of Pd/GO-MXene-PS was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and Brunner−Emmet−Teller (BET). By optimizing the doping ratio of MXene to GO, the mass activity of Pd/GO5-MXene5-PS (2944.0 mA·mg−1) was 3.0 times higher than that of commercial Pd/C (950.4 mA·mg−1) toward ethanol oxidation in base solution. Meanwhile, the rotating disk electrode (RDE) results demonstrated that Pd/GO5-MXene5-PS had a faster kinetics of ethanol oxidation. The enhanced ethanol oxidation over Pd/GO5-MXene5-PS could attribute to the excellent 3D interconnected porous structure, large surface area, good conductivity and homogeneous Pd distribution. This work provided a new idea for creating 3D porous MXene composite materials in electrocatalysis.

Graphical abstract

摘要

制备低成本、催化性能优异的钯基催化剂是提升直接乙醇燃料电池性能的关键。为了进一步提高乙醇电氧化的催化性能, 我们制备了以聚苯乙烯 (PS) 微球为牺牲模板, 由氧化石墨烯(GO)和MXene共同构建的Pd基三维多孔催化剂(Pd/GO-MXene-PS)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和Brunner-Emmet-Teller (BET)对Pd/GO-MXene-PS催化剂的三维多孔结构进行了表征。优化MXene与GO的掺杂比例后, 制备出的Pd/GO5-MXene5-PS催化剂对乙醇电催化氧化的质量活性(2944.0 mA·mg−1)是商用Pd/C(950.4 mA·mg−1)催化剂的3.0倍。旋转圆盘电极测试的结果进一步表明Pd/GO5-MXene5-PS具有更快的乙醇氧化动力学,这主要归因于催化剂本身拥有大表面积和良好的导电性的三维多孔结构。本工作为制备三维多孔MXene复合材料提供了一个新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dorner RW, Hardy DR, Williams FW, Willauer HD. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy Environ Sci. 2010;3(7):884.

    CAS  Google Scholar 

  2. Cui MS, Zhang YQ, Zhong Q, Long ZQ, Zhao N, Huang XW. Portable XRF analysis of noble metal contents for automotive catalysts. Chinese J Rare Met. 2020;44(11):1227.

    Google Scholar 

  3. Akhairi MAF, Kamarudin SK. Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy. 2016;41(7):4214.

    CAS  Google Scholar 

  4. Chen A, Ostrom C. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev. 2015;115(21):11999.

    CAS  Google Scholar 

  5. Zhang Y, Yuan X, Lyu FL, Wang XC, Jiang XJ, Cao MH, Zhang Q. Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Met. 2020;39(7):792.

    CAS  Google Scholar 

  6. Sheng T, Qiu C, Lin X, Lin WF, Sun SG. Insights into ethanol electro-oxidation over solvated Pt(100): origin of selectivity and kinetics revealed by DFT. Appl Surf Sci. 2020;533: 147505.

    CAS  Google Scholar 

  7. Maya-Cornejo J, Diaz-Real JA, Lopez-Miranda JL, Álvarez-Contreras L, Esparza R, Arjona N, Estévez M. Formation of Cu@Pd core@shell nanocatalysts with high activity for ethanol electro-oxidation in alkaline medium. Appl Surf Sci. 2021. https://doi.org/10.1016/j.apsusc.2020.148119.

    Article  Google Scholar 

  8. Shafaei Douk A, Saravani H, Noroozifar M. Novel fabrication of PdCu nanostructures decorated on graphene as excellent electrocatalyst toward ethanol oxidation. Int J Hydrogen Energy. 2017;42(22):15149.

    CAS  Google Scholar 

  9. Zhang Y, Liu Q, Shao X, Ma W, Feng YN. Progress in fabrication and application of graphene nanoribbons. Chinese J Rare Met. 2021;45(9):1119.

    Google Scholar 

  10. Taei M, Havakeshian E, Salavati H, Azemati M. Highly active electrocatalysts for ethanol oxidation based on gold nanodendrites modified with NiFe2O4 nanoparticles decorated multi-walled carbon nanotubes. Chem Pap. 2019;73(11):2687.

    CAS  Google Scholar 

  11. Young SJ, Lin ZD. Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate. Microsyst Technol. 2016;24(1):55.

    Google Scholar 

  12. Sudachom N, Warakulwit C, Prapainainar C, Witoon T, Prapainainar P. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: synthesis and characterization. J Fuel Chem Technol. 2017;45(5):596.

    CAS  Google Scholar 

  13. Lin D, Jiang Y, Chen S, Chen S, Sun S. Preparation of Pt nanoparticles supported on ordered mesoporous carbon FDU-15 for electrocatalytic oxidation of CO and methanol. Electrochim Acta. 2012;67:127.

    CAS  Google Scholar 

  14. Geng D, Zhu S, Chai M, Zhang Z, Fan J, Xu Q, Min Y. PdxFey alloy nanoparticles decorated on carbon nanofibers with improved electrocatalytic activity for ethanol electrooxidation in alkaline media. New J Chem. 2020;44(13):5023.

    CAS  Google Scholar 

  15. Carrión-Satorre S, Montiel M, Escudero-Cid R, Fierro JLG, Fatás E, Ocón P. Performance of carbon-supported palladium and palladium ruthenium catalysts for alkaline membrane direct ethanol fuel cells. Int J Hydrogen Energy. 2016;41(21):8954.

    Google Scholar 

  16. Ramli ZAC, Kamarudin SK. Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review. Nanoscale Res Lett. 2018;13(1):410.

    CAS  Google Scholar 

  17. Xiu L, Wang Z, Yu M, Wu X, Qiu J. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano. 2018;12(8):8017.

    CAS  Google Scholar 

  18. Qiu ZM, Bai Y, Gao YD, Liu CL, Ru Y, Pi YC, Zhang YZ, Luo YS, Pang H. MXenes nanocomposites for energy storage and conversion. Rare Met. 2021. https://doi.org/10.1007/s12598-021-01876-0.

    Article  Google Scholar 

  19. Kshetri T, Tran DT, Le HT, Nguyen DC, Hoa HV, Kim NH, Lee JH. Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Prog Mater Sci. 2021;117: 100733.

    CAS  Google Scholar 

  20. Xiu LY, Wang ZY, Qiu JS. General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Met. 2020;39(11):1237.

    CAS  Google Scholar 

  21. Xiao W, Yan D, Zhang Y, Yang X, Zhang T. Heterostructured MoSe2/oxygen-terminated Ti3C2 MXene architectures for efficient electrocatalytic hydrogen evolution. Energy Fuels. 2021;35(5):4609.

    CAS  Google Scholar 

  22. Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater. 2014;26(4):615.

    CAS  Google Scholar 

  23. Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater. 2016;26(4):615.

    Google Scholar 

  24. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater. 2016;28(7):1517.

    Google Scholar 

  25. Yi QF, Sun LZ. In situ synthesis of palladium nanoparticles on multi-walled carbon nanotubes and their electroactivity for ethanol oxidation. Rare Met. 2013;32(6):586.

    CAS  Google Scholar 

  26. Hren M, Hribernik S, Gorgieva S, Motealleh A, Eqtesadi S, Wendellbo R, Lue SJ, Božič M. Chitosan-Mg(OH)2 based composite membrane containing nitrogen doped GO for direct ethanol fuel cell. Cellulose. 2021;28(3):1599.

    CAS  Google Scholar 

  27. Zhang Q, Li Y, Chen T, Li L, Shi S, Jin C, Yang B, Hou S. Fabrication of 3D interconnected porous MXene-based PtNPs as highly efficient electrocatalysts for methanol oxidation. J Electroanal Chem. 2021;894: 115338.

    CAS  Google Scholar 

  28. Zhao MQ, Torelli M, Ren CE, Ghidiu M, Ling Z, Anasori B, Barsoum MW, Gogotsi Y. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy. 2016;30:603.

    CAS  Google Scholar 

  29. Yang C, Jiang Q, Li W, He H, Yang L, Lu Z, Huang H. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and mxene nanosheets for methanol oxidation. Chem Mater. 2019;31(22):9277.

    CAS  Google Scholar 

  30. Wu M, An Y, Yang R, Tao Z, Xia Q, Hu Q, Li M, Chen K, Zhang Z, Huang Q, Ma S, Zhou A. V2CTx and Ti3C2Tx MXenes nanosheets for gas sensing. ACS Appl Nano Mater. 2021;4(6):6257.

    CAS  Google Scholar 

  31. Zhang C, Pansare VJ, Prud’homme RK, Priestley RD. Flash nanoprecipitation of polystyrene nanoparticles. Soft Matter. 2012;8(1):86.

    CAS  Google Scholar 

  32. Yuan R, Yuan J, Wu Y, Ju P, Ji L, Li H, Chen L, Zhou H, Chen J. Graphene oxide-monohydrated manganese phosphate composites: preparation via modified Hummers method. Colloids Surf A. 2018;547:56.

    CAS  Google Scholar 

  33. Yang W, Yang W, Song A, Sun G, Shao G. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale. 2018;10(2):816.

    CAS  Google Scholar 

  34. Alvarenga GM, Coutinho Gallo IB, Villullas HM. Enhancement of ethanol oxidation on Pd nanoparticles supported on carbon-antimony tin oxide hybrids unveils the relevance of electronic effects. J Catal. 2017;348:1.

    CAS  Google Scholar 

  35. Promsawan N, Saipanya S, Rattanakansang S, Themsirimongkon S, Inceesungvorn B, Waenkaew P. Modification of various carbons with various metal oxides and noble metal compositions as electrocatalysts for ethanol oxidation. Compos Interfaces. 2020;27(11):1023.

    CAS  Google Scholar 

  36. Zhang P, Fan C, Wang R, Xu C, Cheng J, Wang L, Lu Y, Luo P. Pd/MXene(Ti3C2Tx)/reduced graphene oxide hybrid catalyst for methanol electrooxidation. Nanotechnology. 2020. https://doi.org/10.1088/1361-6528/ab5609.

    Article  Google Scholar 

  37. Huang H, Ye G, Yang S, Fei H, Tiwary CS, Gong Y, Vajtai R, Tour JM, Wang X, Ajayan PM. Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. J Mater Chem A. 2015;3(39):19696.

    CAS  Google Scholar 

  38. Li M, Jiang Q, Yan M, Wei Y, Zong J, Zhang J, Wu Y, Huang H. Three-dimensional boron- and nitrogen-codoped graphene aerogel-supported Pt nanoparticles as highly active electrocatalysts for methanol oxidation reaction. ACS Sustain Chem Eng. 2018;6(5):6644.

    CAS  Google Scholar 

  39. Lu KC, Wang JK, Lin DH, Chen X, Yin SY, Chen GS. Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal Methods. 2020;12(21):2661.

    CAS  Google Scholar 

  40. Chen X, Lu K, Lin D, Li Y, Yin S, Zhang Z, Tang M, Chen G. Hierarchical porous tubular biochar based sensor for detection of trace lead (II). Electroanalysis. 2021;33:473.

    CAS  Google Scholar 

  41. Lin D, Zhang X, Cui X, Chen W. Highly porous carbons with superior performance for CO2 capture through hydrogen-bonding interactions. RSC Adv. 2014;4(52):27414.

    CAS  Google Scholar 

  42. Zhang X, Lin D, Chen W. Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption. RSC Adv. 2015;5(56):45136.

    CAS  Google Scholar 

  43. Scheibe B, Tadyszak K, Jarek M, Michalak N, Kempiński M, Lewandowski M, Peplińska B, Chybczyńska K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl Surf Sci. 2019;479:216.

    CAS  Google Scholar 

  44. Yao C, Zhang Q, Su Y, Xu L, Wang H, Liu J, Hou S. Palladium nanoparticles encapsulated into hollow N-doped graphene microspheres as electrocatalyst for ethanol oxidation reaction. ACS Appl Nano Mater. 2019;2(4):1898.

    CAS  Google Scholar 

  45. Yu X, Liu J, Li J, Luo Z, Zuo Y, Xing C, Llorca J, Nasiou D, Arbiol J, Pan K, Kleinhanns T, Xie Y, Cabot A. Phosphorous incorporation in Pd2Sn alloys for electrocatalytic ethanol oxidation. Nano Energy. 2020;77:105116.

    CAS  Google Scholar 

  46. Kurt Urhan B, Öztürk Doğan H, Çepni E, Eryiğit M, Demir Ü, Öznülüer ÖT. Ni(OH)2-electrochemically reduced graphene oxide nanocomposites as anode electrocatalyst for direct ethanol fuel cell in alkaline media. Chem Phys Lett. 2021;763: 138208.

    CAS  Google Scholar 

  47. Hou G, Parrondo J, Ramani V, Prakash J. Kinetic and mechanistic investigation of methanol oxidation on a smooth polycrystalline Pt surface. J Electrochem Soc. 2013;161(3):F252.

    Google Scholar 

  48. Yousaf AB, Imran M, Uwitonze N, Zeb A, Zaidi SJ, Ansari TM, Yasmeen G, Manzoor S. Enhanced electrocatalytic performance of pt3pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions. J Phys Chem C. 2017;121(4):2069.

    Google Scholar 

  49. Liu H, Yang D, Bao Y, Yu X, Feng L. One-step efficiently coupling ultrafine Pt–Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. J Power Sour. 2019;434: 226754.

    CAS  Google Scholar 

  50. Chen Y, Ma Y, Zhou Y, Huang Y, Li S, Chen Y, Wang R, Tang J, Wu P, Zhao X, Chen C, Zhu Z, Chen S, Cheng K, Lin D. Enhanced methanol oxidation on PtNi nanoparticles supported on silane-modified reduced graphene oxide. Int J Hydrogen Energy. 2022;47(10):6638.

    CAS  Google Scholar 

  51. Zhong J, Bin D, Yan B, Feng Y, Zhang K, Wang J, Wang C, Shiraishi Y, Yang P, Du Y. Highly active and durable flowerlike Pd/Ni(OH)2 catalyst for the electrooxidation of ethanol in alkaline medium. RSC Adv. 2016;6(76):72722.

    CAS  Google Scholar 

  52. Li C, Wen H, Tang PP, Wen XP, Wu LS, Dai HB, Wang P. Effects of Ni(OH)2 morphology on the catalytic performance of Pd/Ni(OH)2/Ni foam hybrid catalyst toward ethanol electrooxidation. ACS Appl Energy Mater. 2018;1(11):6040.

    Google Scholar 

  53. Huang W, Ma XY, Wang H, Feng R, Zhou J, Duchesne PN, Zhang P, Chen F, Han N, Zhao F, Zhou J, Cai WB, Li Y. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv Mater. 2017;29(37):1703057.

    Google Scholar 

  54. Zhang M, Yan Z, Xie J. Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media. Electrochim Acta. 2012;77:237.

    CAS  Google Scholar 

  55. Xu H, Qing Y, Xiong F, Wu Y. Lignin-derived hierarchical porous carbon supported Pd nanoparticles as an efficient electrocatalyst for ethanol oxidation. J Porous Mater. 2020;28(2):337.

    Google Scholar 

  56. Wu T, Wang X, Emrehan Emre A, Fan J, Min Y, Xu Q, Sun S. Graphene-nickel nitride hybrids supporting palladium nanoparticles for enhanced ethanol electrooxidation. J Energy Chem. 2021;55:48.

    Google Scholar 

  57. Wang K, Wang F, Zhao Y, Zhang W. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell. J Energy Chem. 2021;52:251.

    Google Scholar 

  58. Fang B, Feng L. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys Chim Sin. 2020;36(7):1905023.

    Google Scholar 

  59. Tao L, Xia Z, Zhang Q, Sun Y, Li M, Yin K, Gu L, Guo S. Spiny Pd/PtFe core/shell nanotubes with rich high-index facets for efficient electrocatalysis. Science Bulletin. 2021;66(1):44.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. A30B191410), the Sailing Project from Science and Technology Commission of Shanghai Municipality (No. 17YF1406600), Chenguang Project Supported by Shanghai Municipal Education Commission (No. 18CG68) and Gaoyuan Discipline of Shanghai-Materials Science and Engineering (No. A30NH221903), the Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices (Soochow University) (No. KS2022), Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, and the Project of Guangdong Provincial Education (No. 2020KTSCX131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Yun Ma or Dong-Hai Lin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YZ., Zhou, M., Huang, YF. et al. Enhanced ethanol oxidation over Pd nanoparticles supported porous graphene-doped MXene using polystyrene particles as sacrificial templates. Rare Met. 41, 3170–3179 (2022). https://doi.org/10.1007/s12598-022-02039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02039-5

Keywords

Navigation