Graphical abstract
摘要
拓扑自旋结构在新型磁存储方面有着广阔的应用前景。最近, 层状磁性材料Cr1/3TaS2 (CTS) 被证实是一种手性螺旋磁体, 并且通过洛伦兹电子显微术在该材料中观测到了一维磁孤子。 在本文中, 我们通过测量不同厚度样品的磁输运特性, 证实了CTS 中磁孤子的空间限制与 离散化效应。我们在CTS 纳米片中观测到了磁电阻的回滞和跳跃, 而在块体样品并没有出 现这些现象。在纳米片中, 螺旋磁结构在旋转轴方向上空间受限, 样品所能容纳的磁孤子数 是分立的整数, 且取决于样品厚度。当磁场在垂直于旋转轴方向上不断变化时, 磁孤子数目 只能以整数形式不连续地变化, 从而导致磁电阻产生离散化的跳跃。磁孤子的准粒子特性使 得体系处在分立的不同孤子数状态下时存在能量势垒, 从而导致了磁电阻的回滞现象。我们 的研究结果显示了CTS 在纳米自旋电子学器件领域的巨大潜力。
References
Parkin SSP, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science. 2008;320(5873):190.
Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465(7300):901.
Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine RA, Everschor K, Garst M, Rosch A. Spin transfer torques in MnSi at ultralow current densities. Science. 2010;330(6011):1648.
Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat Nanotechnol. 2013;8(11):839.
Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915.
Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater. 2011;10(2):106.
Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of skyrmions in a multiferroic material. Science. 2012;336(6078):198.
Wei WS, He ZD, Qu Z, Du HF. Dzyaloshinsky-Moriya interaction (DMI)-induced magnetic skyrmion materials. Rare Met. 2021;40(11):3076.
Togawa Y, Kishine J, Nosov PA, Koyama T, Paterson GW, McVitie S, Kousaka Y, Akimitsu J, Ogata M, Ovchinnikov AS. Anomalous temperature behavior of the chiral spin helix in CrNb3S6 thin lamellae. Phys Rev Lett. 2019;122(1):017204.
Tang S, Fishman RS, Okamoto S, Yi J, Zou Q, Fu M, Li AP, Mandrus D, Gai Z. Tuning magnetic soliton phase via dimensional confinement in exfoliated 2D Cr1/3NbS2 thin flakes. Nano Lett. 2018;18(6):4023.
Wang L, Chepiga N, Ki DK, Li L, Li F, Zhu W, Kato Y, Ovchinnikova OS, Mila F, Martin I, Mandrus D, Morpurgo AF. Controlling the topological sector of magnetic solitons in exfoliated Cr1/3NbS2 crystals. Phys Rev Lett. 2017;118(25):257203.
Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov AS, Kishine J. Interlayer magnetoresistance due to chiral soliton lattice formation in hexagonal chiral magnet CrNb3S6. Phys Rev Lett. 2013;111(19):197204.
Cao Y, Huang Z, Yin Y, Xie H, Liu B, Wang W, Zhu C, Mandrus D, Wang L, Huang W. Overview and advances in a layered chiral helimagnet Cr1/3NbS2. Mater Today Adv. 2020;7:100080.
Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov AS, Kishine J. Chiral magnetic soliton lattice on a chiral helimagnet. Phys Rev Lett. 2012;108(10):107202.
Karna SK, Marshall M, Xie W, DeBeer-Schmitt L, Young DP, Vekhter I, Shelton WA, Kovacs A, Charilaou M, DiTusa JF. Annihilation and control of chiral domain walls with magnetic fields. Nano Lett. 2021;21(3):1205.
Zhang C, Zhang J, Liu C, Zhang S, Yuan Y, Li P, Wen Y, Jiang Z, Zhou B, Lei Y, Zheng D, Song C, Hou Z, Mi W, Schwingenschlogl U, Manchon A, Qiu ZQ, Alshareef HN, Peng Y, Zhang XX. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv Mater. 2021;33(35):2101131.
Du K, Huang FT, Kim J, Lim SJ, Gamage K, Yang J, Mostovoy M, Garlow J, Han MG, Zhu Y, Cheong SW. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc Natl Acad Sci USA. 2021;118(40):e2023337118.
Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120(1):91.
Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241.
Togawa Y, Kousaka Y, Inoue K, Kishine JI. Symmetry, structure, and dynamics of monoaxial chiral magnets. J Phys Soc Jpn. 2016;85(11):112001.
Kishine JI, Ovchinnikov AS. Chapter One-Theory of Monoaxial Chiral Helimagnet. In: Camley RE, Stamps RL, editors. Solid state physics. Waltham, Massachusetts: Academic Press; 2015.1.
Obeysekera D, Gamage K, Gao Y, Cheong SW, Yang J. The magneto-transport properties of Cr1/3TaS2 with chiral magnetic solitons. Adv Electron Mater. 2021;7(10):2100424.
Parkin SSP, Friend RH. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I Magnetic properties Philos Mag B. 1980;41(1):65.
Yamasaki Y, Moriya R, Arai M, Masubuchi S, Pyon S, Tamegai T, Ueno K, Machida T. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2. 2D Mater. 2017;4(4):041007.
Arai M, Moriya R, Yabuki N, Masubuchi S, Ueno K, Machida T. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett. 2015;107(10):103107.
Cai R, Yao Y, Lv P, Ma Y, Xing W, Li B, Ji Y, Zhou H, Shen C, Jia S, Xie XC, Zutic I, Sun QF, Han W. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat Commun. 2021;12(1):6725.
Zheng G, Wang M, Zhu X, Tan C, Wang J, Albarakati S, Aloufi N, Algarni M, Farrar L, Wu M, Yao Y, Tian M, Zhou J, Wang L. Tailoring Dzyaloshinskii-Moriya interaction in a transition metal dichalcogenide by dual-intercalation. Nat Commun. 2021;12(1):3639.
Zhang C, Yuan Y, Wang M, Li P, Zhang J, Wen Y, Zhou S, Zhang XX. Critical behavior of intercalated quasi-van der Waals ferromagnet Fe0.26TaS2. Phys Rev Mater. 2019;3(11):114403.
Kousaka Y, Nakao Y, Kishine J, Akita M, Inoue K, Akimitsu J. Chiral helimagnetism in T1/3NbS2 (T=Cr and Mn). Nucl Instrum Methods Phys Res Sect A. 2009;600(1):250.
Miyadai T, Kikuchi K, Kondo H, Sakka S, Arai M, Ishikawa Y. Magnetic properties of Cr1/3NbS2. J Phys Soc Jpn. 1983;52(4):1394.
Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. Phys Rev Lett. 2012;108(23):237204.
Bocarsly JD, Need RF, Seshadri R, Wilson SD. Magnetoentropic signatures of skyrmionic phase behavior in FeGe. Phys Rev B. 2018;97(10):100404(R).
Shinozaki M, Masaki Y, Aoki R, Togawa Y, Kato Y. Intrinsic hysteresis due to the surface barrier for chiral solitons in monoaxial chiral helimagnets. Phys Rev B. 2018;97(21):214413.
Barkhausen H. Zwei mit hilfe der neuen Verstärker entdeckte erscheinungen. Phys Z. 1919;20(17):401.
Wilson MN, Karhu EA, Lake DP, Quigley AS, Meynell S, Bogdanov AN, Fritzsche H, Rößler UK, Monchesky TL. Discrete helicoidal states in chiral magnetic thin films. Phys Rev B. 2013;88(21):214420.
Göbel B, Mertig I, Tretiakov OA. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phy Rep. 2021;895:1.
Togawa Y, Koyama T, Nishimori Y, Matsumoto Y, McVitie S, McGrouther D, Stamps RL, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Bostrem IG, Sinitsyn VE, Ovchinnikov AS, Kishine J. Magnetic soliton confinement and discretization effects arising from macroscopic coherence in a chiral spin soliton lattice. Phys Rev B. 2015;92(22):220412(R).
Masaki Y, Stamps RL. Magnetic anisotropy and conical phase transition in monoaxial chiral magnets. Phys Rev B. 2017;95(2):024418.
Yonemura JI, Shimamoto Y, Kida T, Yoshizawa D, Kousaka Y, Nishihara S, Goncalves FJT, Akimitsu J, Inoue K, Hagiwara M, Togawa Y. Magnetic solitons and magnetic phase diagram of the hexagonal chiral crystal CrNb3S6 in oblique magnetic fields. Phys Rev B. 2017;96(18):184423.
Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park HS, Shindo D, Nagaosa N, Tokura Y. Large anisotropic deformation of skyrmions in strained crystal. Nat Nanotechnol. 2015;10(7):589.
Feng C, Meng F, Wang Y, Jiang J, Mehmood N, Cao Y, Lv X, Yang F, Wang L, Zhao Y, Xie S, Hou Z, Mi W, Peng Y, Wang K, Gao X, Yu G, Liu J. Field-free manipulation of skyrmion creation and annihilation by tunable strain engineering. Adv Funct Mater. 2021;31(14):2008715.
Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang XX, Liu J. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat Commun. 2020;11(1):3577.
Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu JM, Zhao Y. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling. Nat Commun. 2021;12(1):322.
Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Ruckriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K, Zhang J. Strain-driven Dzyaloshinskii-Moriya interaction for room-temperature magnetic skyrmions. Phys Rev Lett. 2021;127(11):117204.
Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.
Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.
Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.
Acknowledgments
This work was financially supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under the Award Nos. CRF-2018-3717-CRG7 and CRF-2019-4081-CRG8. P. Li would like to thank the funding support from the National Natural Science Foundation of China (No. 12074056).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhang, CH., Algaidi, H., Li, P. et al. Magnetic soliton confinement and discretization effects in Cr1/3TaS2 nanoflakes. Rare Met. 41, 3005–3011 (2022). https://doi.org/10.1007/s12598-022-02037-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12598-022-02037-7