Skip to main content

Advertisement

Log in

Differentiating structure of in situ and ex situ formation of laser-induced graphene hybrids

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Laser-induced graphene (LIG) has been exploited in various fields, such as batteries, water treatment, and flexible actuators and sensors, with the advantages of ease in patternable fabrication and graphene/metal hybrid preparation. The in situ method which includes a single lase step and the ex situ method which uses two lase steps are both widely implemented to synthesize graphene/metal hybrids. However, the differences in the structures and properties of the resulting hybrids are not fully understood. Here, we investigate the advantages of ex situ and in situ methods for preparing LIG hybrids using NiFe/LIG as an example. The morphology, elemental composition, resistance to strong acid, and application in electrocatalysis and dye adsorption of ex situ and in situ NiFe/LIG hybrids were systematically studied and compared. Energy-dispersive X-ray spectrometry (EDS) and vibrating sample magnetometry (VSM) results confirmed the structural differences between the NiFe/LIG hybrids. Metal nanoparticles are mostly wrapped by carbon layers in the in situ NiFe/LIG hybrid, while the ex situ NiFe/LIG hybrid largely exposes the metal nanoparticles. These structural differences are significant for tailoring performance in applications, such as wastewater treatment and electrocatalysis. This work provides insights into the synthesis and properties of LIGs and has important implications for future applications.

摘要

激光诱导石墨烯(LIG)具有易于图形化制造和石墨烯/金属复合制备的优点, 已被广泛应用于电池、水处理、柔性驱动器和传感器等领域。原位法和非原位法均被广泛用于合成石墨烯/金属复合物。然而, 由这两种方法所产生的复合材料在结构和性质上的差异尚未清楚。本文以NiFe/LIG为例, 研究了非原位和原位方法制备石墨烯和金属复合物的优势。系统地研究和比较了原位和非原位NiFe/LIG复合物的形貌、元素组成、耐酸性以及在电催化和染料吸附方面的应用。能量色散X射线光谱 (EDS) 和振动样品磁强计 (VSM) 的结果证实了NiFe/LIG杂化物之间的结构差异。在原位NiFe/LIG中, 金属纳米粒子主要被碳层包裹, 而非原位NiFe/LIG则暴露出大部分的金属纳米粒子。这些结构差异对于废水处理和电催化等特定应用中的性能显得非常重要。这项工作为LIG的合成和性质提供了一定的研究基础, 并对未来的应用具有重要意义。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    CAS  Google Scholar 

  2. Tiwari SK, Sahoo S, Wang N, Huczko A. Graphene research and their outputs: status and prospect. J Sci Adv Mater Devices. 2020;5(1):10.

    Google Scholar 

  3. Hill EW, Vijayaragahvan A, Novoselov K. Graphene Sensors. IEEE Sens. J. 2011;11(12):3161.

    CAS  Google Scholar 

  4. Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X. Graphene: an emerging electronic material. Adv Mater. 2012;24(43):5782.

    CAS  Google Scholar 

  5. Du W, Jiang X, Zhu L. From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J Mater Chem A. 2013;1:10592.

    CAS  Google Scholar 

  6. Pu NW, Wang CA, Sung Y, Liu YM, Der GM. Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett. 2009;63(23):1987.

    CAS  Google Scholar 

  7. Bourlinos AB, Georgakilas V, Zboril R, Sterioti TA, Stubos AK. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small. 2009;5(16):1841.

    CAS  Google Scholar 

  8. Vitchev R, Malesevic A, Petrov RH, Kemps R, Mertens M, Vanhulsel A, Van Haesendonck C. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition. Nanotechnology. 2010;21(9):095602.

    Google Scholar 

  9. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706.

    CAS  Google Scholar 

  10. An H, Lee WJ, Jung J. Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys. 2011;11(4):S81.

    Google Scholar 

  11. Yang CR, Tseng SF, Chen YT. Laser-induced reduction of graphene oxide powders by high pulsed ultraviolet laser irradiations. Appl Surf Sci. 2018. https://doi.org/10.1016/j.apsusc.2018.03.090.

    Article  Google Scholar 

  12. Ghoniem E, Mori S, Abdel-Moniem A. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate. J Power Sources. 2016;324:32427.

    Google Scholar 

  13. Huang L, Liu Y, Ji LC, Xie YQ, Wang T, Shi WZ. Pulsed laser assisted reduction of graphene oxide. Carbon. 2011;49(7):2431.

    CAS  Google Scholar 

  14. Ye R, Huang L. Direct laser-assisted manufacturing and patterning of graphene from polymers. HKIE Trans. 2019;26(4):166.

    Google Scholar 

  15. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, Yacaman MJ, Yakobson BI, Tour JM. Laser-induced porous graphene films from commercial polymers. Nat Commun. 2014;5(1):5714.

    CAS  Google Scholar 

  16. Ye R, Han X, Kosynkin DV, Li Y, Zhang C, Jiang B, Martí AA, Tour JM. Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano. 2018;12(2):1083.

    CAS  Google Scholar 

  17. Yang W, Zhao W, Li Q, Li H, Wang Y, Li Y, Wang G. Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl Mater Interfaces. 2020;12(3):3928.

    CAS  Google Scholar 

  18. Singh SP, Li Y, Zhang J, Tour JM, Arnusch CJ. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano. 2018;12(1):289.

    CAS  Google Scholar 

  19. Beckham JL, Li JT, Stanford MG, Chen W, McHugh EA, Advincula PA, Wyss KM, Chyan Y, Boldman WL, Rack PD, Tour JM. High-resolution laser-induced graphene from photoresist. ACS Nano. 2021;15(5):8976.

    CAS  Google Scholar 

  20. Ye R, Chyan Y, Zhang J, Li Y, Han X, Kittrell C, Tour JM. Laser-induced graphene formation on wood. Adv Mater. 2017;29(37):1702211.

    Google Scholar 

  21. Chyan Y, Ye R, Li Y, Singh SP, Arnusch CJ, Tour JM. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano. 2018;12(3):2176.

    CAS  Google Scholar 

  22. Carvalho AF, Fernandes AJS, Leitão C, Deuermeier J, Marques AC, Martins R, Fortunato E, Costa FM. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv Funct Mater. 2018;28(52):1805271.

    Google Scholar 

  23. Cai J, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A. 2016;4(5):1671.

    CAS  Google Scholar 

  24. Zhang Z, Song M, Hao J, Wu K, Li C, Hu C. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon. 2018;127:287.

    CAS  Google Scholar 

  25. Tao LQ, Tian H, Liu Y, Ju ZY, Pang Y, Chen YQ, Wang DY, Tian XG, Yan JC, Deng NQ, Yang Y, Ren TL. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat Commun. 2017;8(1):14579.

  26. Ye R, James DK, Tour JM. Laser-induced graphene: from discovery to translation. Adv Mater. 2019;31(1):1803621.

    Google Scholar 

  27. Ye R, James DK, Tour JM. Laser-induced graphene. Acc Chem Res. 2018;51(7):1609.

    CAS  Google Scholar 

  28. Huang L, Su J, Song Y, Ye R. Laser-induced graphene: en route to smart sensing. Nano-Micro Lett. 2020;12(1):157.

    CAS  Google Scholar 

  29. Duy LX, Peng Z, Li Y, Zhang J, Ji Y, Tour JM. Laser-induced graphene fibers. Carbon. 2018;126:472.

    CAS  Google Scholar 

  30. Tiliakos A, Ceaus C, Iordache SM, Vasile E, Stamatin I. Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. J Anal Appl Pyrolysis. 2016;121:275.

    CAS  Google Scholar 

  31. Li Y, Luong DX, Zhang J, Tarkunde YR, Kittrell C, Sargunaraj F, Ji Y, Arnusch CJ, Tour JM. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater. 2017;29(27):1700496.

    Google Scholar 

  32. Gu M, Huang L, Wang Z, Guo W, Cheng L, Yuan Y, Zhou Z, Hu L, Chen S, Shen C, Tang BZ, Ye R. Molecular engineering of laser-induced graphene for potential-driven broad-spectrum antimicrobial and antiviral applications. Small. 2021;17(51):2102841.

    CAS  Google Scholar 

  33. Peng Z, Ye R, Mann JA, Zakhidov D, Li Y, Smalley PR, Lin J, Tour JM. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano. 2015;9(6):5868.

    CAS  Google Scholar 

  34. Huang L, Gu M, Wang Z, Tang TW, Zhu Z, Yuan Y, Wang D, Shen C, Tang BZ, Ye R. Highly efficient and rapid inactivation of coronavirus on non-metal hydrophobic laser-induced graphene in mild conditions. Adv Funct Mater. 2021;31(24):2101195.

    CAS  Google Scholar 

  35. Stanford MG, Yang K, Chyan Y, Kittrell C, Tour JM. Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano. 2019;13(3):3474.

    CAS  Google Scholar 

  36. Thakur AK, Singh SP, Kleinberg MN, Gupta A, Arnusch CJ. Laser-induced graphene-PVA composites as robust electrically conductive water treatment membranes. ACS Appl Mater Interfaces. 2019;11(11):10914.

    CAS  Google Scholar 

  37. Han X, Ye R, Chyan Y, Wang T, Zhang C, Shi L, Zhang T, Zhao Y, Tour JM. Laser-induced graphene from wood impregnated with metal salts and use in electrocatalysis. ACS Appl Nano Mater. 2018;1(9):5053.

    CAS  Google Scholar 

  38. Singh SP, Li Y, Be’Er A, Oren Y, Tour JM, Arnusch CJ. Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action. ACS Appl Mater Interfaces. 2017;9(21):18238.

    CAS  Google Scholar 

  39. Huang L, Ling L, Su J, Song Y, Wang Z, Tang BZ, Westerhoff P, Ye R. Laser-engineered graphene on wood enables efficient antibacterial, anti-salt-fouling, and lipophilic-matter-rejection solar evaporation. ACS Appl Mater Interfaces. 2020;12(46):51864.

    CAS  Google Scholar 

  40. Ren M, Zhang J, Tour JM. Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon. 2018;139:880.

    CAS  Google Scholar 

  41. Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sensors. 2017;2(5):616.

    CAS  Google Scholar 

  42. Alahi MEE, Nag A, Mukhopadhyay SC, Burkitt L. A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens Actuators A Phys. 2018. https://doi.org/10.1016/j.sna.2017.11.022.

    Article  Google Scholar 

  43. Zhu J, Cho M, Li Y, Cho I, Suh JH, Del OD, Jeong Y, Ren TL, Park I. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene. ACS Appl Mater Interfaces. 2019;11(27):24386.

    CAS  Google Scholar 

  44. Ye R, Peng Z, Wang T, Xu Y, Zhang J, Li Y, Nilewski LG, Lin J, Tour JM. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano. 2015;9(9):9244.

    CAS  Google Scholar 

  45. Huang L, Xu S, Wang Z, Xue K, Su J, Song Y, Chen S, Zhu C, Zhong Tang B, Ye R. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask. ACS Nano. 2020;14(9):12045.

    CAS  Google Scholar 

  46. Ge L, Hong Q, Li H, Liu C, Li F. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater. 2019;29(38):1904000.

    Google Scholar 

  47. Gupta A, Holoidovsky L, Thamaraiselvan C, Thakur AK, Singh SP, Meijler MM, Arnusch CJ. Silver-doped laser-induced graphene for potent surface antibacterial activity and anti-biofilm action. Chem Commun. 2019;55(48):6890.

    CAS  Google Scholar 

  48. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97(18):187401.

    CAS  Google Scholar 

  49. Jing P, Liu M, Pu Y, Cui Y, Wang Z, Wang J, Liu Q. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen. Sci Rep. 2016;6(1):37701.

    CAS  Google Scholar 

  50. Zhang YL, Jia CW, Tian RN, Guan HT, Chen G, Dong CJ. Hierarchical flower-like NiFe2O4 with core–shell structure for excellent toluene detection. Rare Met. 2021;40(6):1578.

    CAS  Google Scholar 

  51. Hengne AM, Samal AK, Enakonda LR, Harb M, Gevers LE, Anjum DH, Hedhili MN, Saih Y, Huang KW, Basset JM. Ni–Sn-supported ZrO2 catalysts modified by indium for selective CO2 hydrogenation to methanol. ACS Omega. 2018;3(4):3688.

    CAS  Google Scholar 

  52. Wang J, Zhao Q, Hou H, Wu Y, Yu W, Ji X, Shao L. Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. RSC Adv. 2017;7(23):14152.

    CAS  Google Scholar 

  53. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257(7):2717.

    CAS  Google Scholar 

  54. Zhu K, Zhu X, Yang W. Application of in situ techniques for the characterization of nife-based oxygen evolution reaction (OER) electrocatalysts. Angew Chemie Int Ed. 2019;58(5):1252.

    CAS  Google Scholar 

  55. Yang N, Zhu S, Zhang D, Xu S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett. 2008;62(4):645.

    CAS  Google Scholar 

  56. Bai S, Shen X, Zhong X, Liu Y, Zhu G, Xu X, Chen K. One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon. 2012;50(6):2337.

    CAS  Google Scholar 

  57. Namasivayam C, Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dye Pigment. 2002;54(1):47.

    CAS  Google Scholar 

  58. Ferraz NP, Nogueira AE, Marcos FCF, Machado VA, Rocca RR, Assaf EM, Asencios YJO. CeO2-Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020;39(3):230.

    CAS  Google Scholar 

  59. Salimi A, Roosta A. Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochim Acta. 2019. https://doi.org/10.1016/j.tca.2019.03.024.

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the State Key Laboratory of Marine Pollution (SKLMP) Seed Collaborative Research Fund (No. SKLMP/IRF/0029). R.-Q. Ye also acknowledges support from the Chow Sang Sang Group Research Fund (No. 9229060) sponsored by Chow Sang Sang Holdings International Ltd and the CityU Applied Research Grant (No. 9667224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Quan Ye.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LB., Guo, WH., Cheng, L. et al. Differentiating structure of in situ and ex situ formation of laser-induced graphene hybrids. Rare Met. 41, 3035–3044 (2022). https://doi.org/10.1007/s12598-022-02027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02027-9

Keywords

Navigation