Skip to main content

Advertisement

Log in

Calcium- and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ni-rich lithium nickel–cobalt-manganese oxides (NCM) are considered the most promising cathode materials for lithium-ion batteries (LIBs); however, relatively poor cycling performance is a bottleneck preventing their widespread use in energy systems. In this work, we propose the use of a dually functionalized surface modifier, calcium sulfate (CaSO4, CSO), in an efficient one step method to increase the cycling performance of Ni-rich NCM cathode materials. Thermal treatment of LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials with a CSO precursor allows the formation of an artificial Ca- and SOx-functionalized cathode–electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode materials. The CEI layer then inhibits electrolyte decomposition at the interface between the Ni-rich NCM cathode and the electrolyte. Successful formation of the CSO-modified CEI layer is confirmed by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analyses, and the process does not affect the bulk structure of the Ni-rich NCM cathode material. During cycling, the CSO-modified CEI layer remarkably decreases electrolyte decomposition upon cycling at both room temperature and 45 °C, leading to a substantial increase in cycling retention of the cells. A cell cycled with a 0.1 CSO-modified (modified with 0.1% CSO) NCM811 cathode exhibits a specific capacity retention of 90.0%, while the cell cycled with non-modified NCM811 cathode suffers from continuous fading of cycling retention (74.0%) after 100 cycles. SEM, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma mass spectrometry (ICP-MS) results of the recovered electrodes demonstrate that undesired surface reactions such as electrolyte decomposition and metal dissolution are well controlled in the cell because of the artificial CSO-modified CEI layer present on the surface of Ni-rich NCM811 cathodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen X, He W, Ding LX, Wang S, Wang H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci. 2019;12(3):938.

    CAS  Google Scholar 

  2. Jiang Z, Xie H, Wang S, Song X, Yao X, Wang H. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv Energy Mater. 2018;8(27):1801433.

    Google Scholar 

  3. Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun. 2020;11(1):2499.

    CAS  Google Scholar 

  4. Erickson EM, Li W, Dolocan A, Manthiram A. Insights into the cathode–electrolyte interphases of high-energy-density cathodes in lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12(14):16451.

    CAS  Google Scholar 

  5. Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater. 2016;6(1):1501010.

    Google Scholar 

  6. Yim T, Kang KS, Mun J, Lim SH, Woo SG, Kim KJ, Park MS, Cho W, Song JH, Han YK, Yu JS, Kim YJ. Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. J Power Sour. 2016;302:431.

    CAS  Google Scholar 

  7. Lei Y, Li Y, Jiang H, Lai C. Preparing enhanced electrochemical performances Fe2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials by thermal decomposition of iron citrate. J Mater Sci. 2019;54(5):4202.

    CAS  Google Scholar 

  8. Li J, Liu Z, Wang Y, Wang R. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode. J Alloys Compd. 2020;834:155150.

    CAS  Google Scholar 

  9. Neudeck S, Walther F, Bergfeldt T, Suchomski C, Rohnke M, Hartmann P, Janek J, Brezesinski T. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl Mater Interfaces. 2018;10(24):20487.

    CAS  Google Scholar 

  10. Tang W, Peng Z, Shi Y, Xu S, Shuai H, Zhou S, Kong Y, Yan K, Lu T, Wang G. Enhanced cyclability and safety performance of LiNi0.6Co0.2Mn0.2O2 at elevated temperature by AlPO4 modification. J Alloys Compd. 2019;810:151834.

    CAS  Google Scholar 

  11. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Qi G, Zhang X, Ma L. Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials. Ceram Int. 2019;45(1):144.

    CAS  Google Scholar 

  12. Jung H, Park W, Holder J, Yun Y, Bong S. Electrochemical properties of high nickel content Li(Ni0.7Co0.2Mn0.1)O2 with an alumina thin-coating layer as a cathode material for lithium ion batteries. J Nanosci Nanotechnol. 2020;20(10):6505.

    CAS  Google Scholar 

  13. Gan Q, Qin N, Zhu Y, Huang Z, Zhang F, Gu S, Xie J, Zhang K, Lu L, Lu Z. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12594.

    CAS  Google Scholar 

  14. Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01629-5.

    Article  Google Scholar 

  15. Zhao X, Zhuang QC, Wu C, Wu K, Xu JM, Zhang MY, Sun XL. Impedance studies on the capacity fading mechanism of Li(Ni0.5Co0.2Mn0.3) cathode with high-voltage and high-temperature. J Electrochem Soc. 2015;162(14):A2770.

    CAS  Google Scholar 

  16. Lim JM, Hwang T, Kim D, Park MS, Cho K, Cho M. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci Rep. 2017;7(1):39669.

    CAS  Google Scholar 

  17. Sun HH, Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem Mater. 2017;29(19):8486.

    CAS  Google Scholar 

  18. Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sour. 2013;233:121.

    CAS  Google Scholar 

  19. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Nowak S, Cekic Laskovic I, Winter M. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J Power Sour. 2017;359:458.

    CAS  Google Scholar 

  20. Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155.

    CAS  Google Scholar 

  21. Al-Hallaj S, Selman JR. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sour. 2002;110(2):341.

    CAS  Google Scholar 

  22. Wu L, Nam K-W, Wang X, Zhou Y, Zheng JC, Yang XQ, Zhu Y. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater. 2011;23(17):3953.

    CAS  Google Scholar 

  23. Hwang S, Kim SM, Bak SM, Cho BW, Chung KY, Lee JY, Chang W, Stach EA. Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. ACS Appl Mater Interfaces. 2014;6(17):15140.

    CAS  Google Scholar 

  24. Liang C, Kong F, Longo RC, Kc S, Kim JS, Jeon S, Choi S, Cho K. Unraveling the origin of instability in Ni-rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C. 2016;120(12):6383.

    CAS  Google Scholar 

  25. Sun Y, Zhang Z, Li H, Yang T, Zhang H, Shi X, Song D, Zhang L. Influence of Ni/Mn distributions on the structure and electrochemical properties of Ni-rich cathode materials. Dalton Trans. 2018;47(46):16651.

    CAS  Google Scholar 

  26. Sari HMK, Li X. Controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv Energy Mater. 2019;9(39):1901597.

    Google Scholar 

  27. Hwang S, Kim SM, Bak SM, Chung KY, Chang W. Investigating the reversibility of structural modifications of LixNiyMnzCo1–y–zO2 cathode materials during initial charge/discharge, at multiple length scales. Chem Mater. 2015;27(17):6044.

    CAS  Google Scholar 

  28. Yim T, Jang SH, Han YK. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. J Power Sour. 2017;372:24.

    CAS  Google Scholar 

  29. Li WH, Liang HJ, Hou XK, Gu ZY, Zhao XX, Guo JZ, Yang X, Wu XL. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J Energy Chem. 2020;50:416.

    Google Scholar 

  30. Wang XT, Gu ZY, Li WH, Zhao XX, Guo JZ, Du KD, Luo XX, Wu XL. Regulation of cathode-electrolyte interphase via electrolyte additives in lithium ion batteries. Chem: Asian J. 2020;15(18):2803.

    CAS  Google Scholar 

  31. Xiao Z, Chi Z, Song L, Cao Z, Li A. LiTa2PO8 coated nickel-rich cathode material for improved electrochemical performance at high voltage. Ceram Int. 2020;46(6):8328.

    CAS  Google Scholar 

  32. Yu H, Wang S, Hu Y, He G, Le QB, Parkin IP, Jiang H. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy Environ. 2020. https://doi.org/10.1016/j.gee.2020.09.011.

    Article  Google Scholar 

  33. Zou P, Lin Z, Fan M, Wang F, Liu Y, Xiong X. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506.

    CAS  Google Scholar 

  34. Tunega D, Zaoui A. Understanding of bonding and mechanical characteristics of cementitious mineral tobermorite from first principles. J Comput Chem. 2011;32(2):306.

    CAS  Google Scholar 

  35. Seong WM, Cho K-H, Park J-W, Park H, Eum D, Lee MH, Kim I-s S, Lim J, Kang K. Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries. Angew Chem Int Ed. 2020;59(42):2.

    Google Scholar 

  36. Hu M, Pang X, Zhou Z. Recent progress in high-voltage lithium ion batteries. J Power Sour. 2013;237:229.

    CAS  Google Scholar 

  37. Lim SH, Cho W, Kim YJ, Yim T. Insight into the electrochemical behaviors of 5V–class high–voltage batteries composed of lithium–rich layered oxide with multifunctional additive. J Power Sour. 2016;336:465.

    CAS  Google Scholar 

  38. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114(23):11503.

    CAS  Google Scholar 

  39. Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds: Tables of Spectral Data. 4th ed. Berlin: Springer; 2009. 305.

    Google Scholar 

  40. Ende M, Kirkkala T, Loitzenbauer M, Talla D, Wildner M, Miletich R. High-pressure behavior of nickel sulfate monohydrate: isothermal compressibility, structural polymorphism, and transition pathway. Inorg Chem. 2020;59(9):6255.

    CAS  Google Scholar 

  41. Li S, Liu X, Mao R, Huang Z, Xie R. Red-emission enhancement of the CaAlSiN3:Eu2+ phosphor by partial substitution for Ca3N2 by CaCO3 and excess calcium source addition. RSC Adv. 2015;5(93):76507.

    CAS  Google Scholar 

  42. Friedrich F, Strehle B, Freiberg ATS, Kleiner K, Day SJ, Erk C, Piana M, Gasteiger HA. Editors’ choice—capacity fading mechanisms of NCM-811 cathodes in lithium-ion batteries studied by X-ray diffraction and other diagnostics. J Electrochem Soc. 2019;166(15):3760.

    Google Scholar 

  43. Hashigami S, Kato Y, Yoshimi K, Fukumoto A, Cao Z, Yoshida H, Inagaki T, Hashinokuchi M, Haruta M, Doi T, Inaba M. Effect of lithium silicate addition on the microstructure and crack formation of LiNi0.8Co0.1Mn0.1O2 cathode particles. ACS Appl Mater Interfaces. 2019;11(43):39910.

    CAS  Google Scholar 

  44. Wang Z, Liu E, He C, Shi C, Li J, Zhao N. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sour. 2013;236:25.

    CAS  Google Scholar 

  45. Wu X, Zhang W, Wu N, Pang SS, He G, Ding Y. Exploration of nanoporous CuBi binary alloy for potassium storage. Adv Funct Mater. 2020;30(43):2003838.

    CAS  Google Scholar 

  46. Lee SH, Lee S, Jin BS, Kim HS. Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci Rep. 2019;9(1):8901.

    Google Scholar 

  47. Li X, Xu M, Chen Y, Lucht BL. Surface study of electrodes after long-term cycling in Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J Power Sour. 2014;248:1077.

    CAS  Google Scholar 

  48. Liu T, Garsuch A, Chesneau F, Lucht BL. Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages. J Power Sour. 2014;269:920.

    CAS  Google Scholar 

  49. Yan G, Li X, Wang Z, Guo H, Wang J, Peng W, Hu Q. Effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the high voltage cycling performance of graphite/LiNi0.5Co0.2Mn0.3O2 battery. Electrochim Acta. 2015;166:190.

    CAS  Google Scholar 

  50. Mun J, Kim S, Yim T, Ryu JH, Kim YG, Oh SM. Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. J Electrochem Soc. 2009;157(2):A136.

    Google Scholar 

  51. Yang L, Ravdel B, Lucht BL. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett. 2010;13(8):A95.

    CAS  Google Scholar 

  52. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105:52.

    CAS  Google Scholar 

  53. Pu KC, Zhang X, Qu XL, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616.

    CAS  Google Scholar 

  54. Zhu J, Li Y, Xue L, Chen Y, Lei T, Deng S, Cao G. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J Alloys Compd. 2019;773:112.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) (Nos. NRF-2019R1C1C1002249 and NRF-2017R1A6A1A06015181) and the Technology Innovation Program (Nos. 20010095 and 20011905) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeeun Yim.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, K., Yim, T. Calcium- and sulfate-functionalized artificial cathode–electrolyte interphases of Ni-rich cathode materials. Rare Met. 40, 2793–2801 (2021). https://doi.org/10.1007/s12598-021-01710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01710-7

Keywords

Navigation