Skip to main content
Log in

Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation

Rare Metals Aims and scope Submit manuscript

Cite this article

Abstract

Searching for non-noble metal catalysts with high activities and low price is critical to the commercialization of methanol oxidation in the process of fuel cells. Herein, two new pseudo-isomeric Ni metal–organic frameworks (Ni-MOFs) (CTGU-17/CTGU-18) have been prepared with 1,4-naphthalenedi-carboxylate (H2NDC), 4,4′-dipyridyl amine (DPA) and Ni(ClO4)2 under hydrothermal condition. Each phase contains one water molecule, but differs dramatically in its bonding to the framework, resulting in different topological networks with fourfold interpenetrating 4-connected dia net (CTGU-17) and (3,7)-connected net (CTGU-18) and diverse electrocatalytic performance for methanol oxidation reaction (MOR). Remarkably, by combining each MOF with the conductive additive, acetylene black (AB), a composite material, AB&CTGU-18(2:4) was confirmed to have an excellent performance for MOR with a high mass specific peak current of 442.3 mA·mg−1. The enhanced electrocatalytic activities and robustness might be attributed to the synergetic effect of acetylene black and the active metal centers of MOFs particles for methanol oxidation. The present work would provide a new insight for the rational design of MOFs-based composites with enhanced methanol oxidation reaction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu SF, Zhu CZ, Du D, Lin YH. Enhanced electrocatalytic activities of PtCuCoNi three-dimensional nanoporous quaternary alloys for oxygen reduction and methanol oxidation reactions. ACS Appl Mater Interfaces. 2016;8(9):6110.

    Article  CAS  Google Scholar 

  2. Xue SF, Deng WT, Yang F, Yang JL, Amiinu IS, He DP, Tang HL, Mu SC. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018;8(8):7578.

    Article  CAS  Google Scholar 

  3. Li R, Ma Z, Zhang F, Meng H, Wang M, Bao XQ, Tang B, Wang X. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation. Electrochim Acta. 2016;220:193.

    Article  CAS  Google Scholar 

  4. Kang YQ, Li FM, Li SN, Ji PJ, Zeng JH, Jiang JX, Chen Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electro oxidation in an alkaline medium. Nano Res. 2016;9:3893.

    Article  CAS  Google Scholar 

  5. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ. Methanol electrooxidation on well-characterized platinumruthenium bulk alloys. J Phys Chem. 1993;97(46):12020.

    Article  CAS  Google Scholar 

  6. Aricò AS, Srinivasan S, Antonucci V. DMFCs: from fundamental aspects to technology development. Fuel Cells. 2001;1:133.

    Article  Google Scholar 

  7. Zhao X, Yin M, Ma L, Liang L, Liu CP, Liao JH, Lu TH, Xing W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci. 2011;4(8):2736.

    Article  CAS  Google Scholar 

  8. Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS. Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru? Chem Rev. 2014;114(24):12397.

    Article  CAS  Google Scholar 

  9. Huang H, Ma L, Tiwary CS, Jiang Q, Yin K, Zhou W, Ajayan PM. Worm-shape Pt nanocrystals grown on nitrogen doped low-defect graphene sheets: highly efficient electrocatalysts for methanol oxidation reaction. Small. 2017;13(10):1603013.

    Article  Google Scholar 

  10. Huang M, Zhang J, Wu C, Guan L. Pt nanoparticles densely coated on SnO2-covered multiwalled carbon nanotubes with excellent electrocatalytic activity and stability for methanol oxidation. ACS Appl Mater Interfaces. 2017;9(32):26921.

    Article  CAS  Google Scholar 

  11. Munjewar SS, Thombre SB, Mallick RK. Approaches to overcome the barrier issues of passive direct methanol fuel cell-review. Renew Sustain Energy Rev. 2017;67:1087.

    Article  CAS  Google Scholar 

  12. Xia BY, Wu HB, Wang X, Lou XW. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J Am Chem Soc. 2012;134(34):13934.

    Article  CAS  Google Scholar 

  13. Meng C, Ling T, Ma TY, Wang H, Hu Z, Zhou Y, Mao J, Du XW, Jaroniec M, Qiao SZ. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv Mater. 2017;29(9):1604607.

    Article  Google Scholar 

  14. Yang PP, Yuan XL, Hu HC, Liu YL, Zheng HW, Yang D, Chen L, Cao MH, Xu Y, Min YL, Li YG, Zhang Q. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater. 2018;28(1):1704774.

    Article  Google Scholar 

  15. Zhang T, Bai Y, Sun YQ, Hang LF, Li XY, Liu DL, Lyu XG, Li CC, Cai WP, Li Y. Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J Mater Chem A. 2018;6(28):13735.

    Article  CAS  Google Scholar 

  16. Zeng ZP, Xiao FX, Phan H, Chen SF, Yu ZZ, Wang R, Nguyen T, Tan TTY. Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J Mater Chem A. 2018;6(4):1700.

    Article  CAS  Google Scholar 

  17. Yu YC, Xin HL, Hovden R, Wang DL, Rus ED, Mundy JA, Muller D, Abruña HD. Three-dimensional tracking and visualization of hundreds of Pt-Co fuel cell nanocatalysts during electrochemical aging. Nano Lett. 2012;12(9):4417.

    Article  CAS  Google Scholar 

  18. Chen C, Kang YL, Huo ZY, Zhu ZW, Huang WY, Xin HL, Snyder JD, Li DG, Herron JA, Mavrikakis M, Chi MF, More KL, Li YD, Markovic NM, Somorjai GA, Yang PD, Stamenkovic VR. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science. 2014;6177(343):1339.

    Article  Google Scholar 

  19. Chen L, Du R, Zhu JH, Mao YY, Xue C, Zhang N, Hou YL, Zhang J, Tao Y. Three-dimensional nitrogen‐doped graphene nanoribbons aerogel as a highly efficient catalyst for the oxygen reduction reaction. Small. 2015;11(12):1423.

    Article  CAS  Google Scholar 

  20. Guo SJ, Zhang S, Sun SH. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed. 2013;52(33):8526.

    Article  CAS  Google Scholar 

  21. Huang WJ, Wang HT, Zhou JG, Wang J, Duchesne PN, Muir D, Zhang P, Han N, Zhao FP, Zeng M, Zhong J, Jin CH, Li YG, Lee ST, Dai HJ. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat Commun. 2015;6:10035.

    Article  CAS  Google Scholar 

  22. Wu YP, Tian JW, Liu S, Li B, Zhao J, Ma LF, Li DS, Lan YQ, Bu X. Bi-microporous metal-organic frameworks with cubane [M4(OH)4](M = Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angew Chem Int Ed. 2019;58(35):12185.

    Article  CAS  Google Scholar 

  23. Singh BK, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020;39(7):751.

    Article  CAS  Google Scholar 

  24. Huang D, Wu X, Tian J, Wang X, Zhou Z, Li D. Assembling of a novel 3D Ag(I)-MOFs with mixed ligands tactics: syntheses, crystal structure and catalytic degradation of nitrophenol. Chin Chem Lett. 2018;19(7):845.

    Article  Google Scholar 

  25. Wu YP, Zhou W, Zhao J, Dong WW, Lan YQ, Li DS, Sun CH, Bu XH. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angew Chem Int Ed. 2017;56(42):13001.

    Article  CAS  Google Scholar 

  26. Wang X, Zhou W, Wu YP, Tian JW, Wang XK, Huang DD, Zhao J, Li DS. Two facile routes to an AB&Cu-MOF composite with improved hydrogen evolution reaction. J. Alloys. Compd. 2018;753:228.

    Article  CAS  Google Scholar 

  27. Shi YK, Wang W, Liu YJ, Liu JJ, Wang L, Guo Y. Catalytic combustion performance of Co3O4 derived from metal-organic framework. Chin J Rare Met. 2019. http://kns.cnki.net/kcms/detail/11.2111.TF.20190923.1552.011.html.

  28. Zhou W, Wu YP, Wang X, Tian JW, Huang DD, Zhao J, Lan YQ, Li DS. Improved conductivity of a new Co(II)-MOF by assembled acetylene black for efficient hydrogen evolution reaction. Cryst Eng Comm. 2018;20(33):4804.

    Article  CAS  Google Scholar 

  29. Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Met. 2020;39(7):815.

    Article  CAS  Google Scholar 

  30. Lu XF, Liao PQ, Wang JW, Wu JX, Chen XW, He CT, Zhang JP, Li GR, Chen XM. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc. 2016;138(27):8336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21971143, 21673127, 21671119, 51572152 and 21805165), the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No. DT20015) and Innovation Team of Young and Middle-aged Research (ITOYMR) in the Higher Education Institutions of Hubei Province (No. T201904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Pan Wu or Dong-Sheng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6761 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, X., Yu, HG. et al. Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 40, 489–498 (2021). https://doi.org/10.1007/s12598-020-01596-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01596-x

Keywords

Navigation