Skip to main content

Advertisement

Log in

Recent progress in thermal/environmental barrier coatings and their corrosion resistance

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Thermal/environmental barrier coatings (T/EBCs) play important roles in jet and/or gas turbine engines to protect the Ni-based superalloys and/or ceramic matrix composite substrates from the high-temperature airflow damage. Great efforts have been contributed to searching for enhanced T/EBC materials to improve the efficiency of the engines, which is the key of improving thrust-to-weight ratio and energy saving. The practical candidates, rare earth-contained materials, are widely used for T/EBCs in gas turbines due to their excellent properties such as low thermal conductivity, high melting point, high-temperature strength and durability as exhibited in yttria-stabilized zirconia, pyrochlore oxides and rare earth silicates. In addition to the intrinsic properties, the microstructures obtained by different synthesis processes and the service performances, as well as the underlying failure mechanism, are also significant to this specific application. However, the main challenges for T/EBCs developments are T/EBC materials selection with balanced properties and their anti-corrosion performances at higher operating temperature. In this review, we summarized the progress in their fabrication techniques and mechanical/thermal properties of typically rare earth-contained T/EBCs, together with their anti-corrosion performance under the condition of molten salts or oxides (such as, Na2SO4, V2O5 and NaVO3), calcium–magnesium–alumina–silicate (CMAS) and high-temperature water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(8):804.

    Article  CAS  Google Scholar 

  2. Langston LS. Powering ahead. Mech Eng. 2011;133(5):30.

    Article  Google Scholar 

  3. Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y, Zhou Y. Advances on strategies for searching for next generation thermal barrier coating materials. J Mater Sci Technol. 2018;35(5):833.

    Article  Google Scholar 

  4. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.

    Article  CAS  Google Scholar 

  5. Li SL, Qi HY, Yang XG. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;37(3):204.

    Article  CAS  Google Scholar 

  6. Chen H, Liu Y, Gao Y, Tao S, Luo H. Design, preparation, and characterization of graded YSZ/La2Zr2O7 thermal barrier coatings. J Am Ceram Soc. 2010;93(6):1732.

    CAS  Google Scholar 

  7. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.

    Article  CAS  Google Scholar 

  8. Schulz U, Saruhan B, Fritscher K, Leyens C. Review on advanced EB-PVD ceramic topcoats for TBC applications. Int J Appl Ceram Technol. 2004;1(4):302.

    Article  CAS  Google Scholar 

  9. Mohan P, Yuan B, Patterson T, Desai V, Sohn YH. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO–MgO–Al2O3–SiO2) deposits. Mater Sci Forum. 2008;595–598:207.

    Article  Google Scholar 

  10. Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol. 2017;318:208.

    Article  CAS  Google Scholar 

  11. Goto T. A review: Structural oxide coatings by laser chemical vapor deposition. J Wuhan Univ Technol Mater Sci Ed. 2016;31(1):1.

    Article  CAS  Google Scholar 

  12. Hospach A, Mauer G, Vaßen R, Stöver D. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). J Therm Spray Technol. 2011;20(1–2):116.

    Article  Google Scholar 

  13. Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.

    Article  CAS  Google Scholar 

  14. Krämer S, Yang J, Levi CG. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J Am Ceram Soc. 2010;91(2):576.

    Article  CAS  Google Scholar 

  15. Zhang HS, Sun K, Xu Q, Wang FC, Liu L, Wei Y, Chen XG. Thermophysical properties of Sm2(Zr1−xCex)2O7 ceramics. Rare Met. 2009;28(3):226.

    Article  CAS  Google Scholar 

  16. Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D. Overview on advanced thermal barrier coatings. Surf Coat Technol. 2010;205(4):938.

    Article  CAS  Google Scholar 

  17. Liu Y, Cooper VR, Wang B, Xiang H, Li Q, Gao Y, Yang J, Zhou Y, Liu B. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Mater Res Lett. 2019;7(4):145.

    Article  CAS  Google Scholar 

  18. Chen L, Jiang Y, Chong X, Feng J. Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J Am Ceram Soc. 2018;101(3):1266.

    Article  CAS  Google Scholar 

  19. Yuan J, Sun J, Wang J, Zhang H, Dong S, Jiang J, Deng L, Zhou X, Cao X. SrCeO3 as a novel thermal barrier coating candidate for high-temperature applications. J Alloys Compd. 2018;740:519.

    Article  CAS  Google Scholar 

  20. Chen L, Wu P, Song P, Feng J. Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J Am Ceram Soc. 2018;101(10):4503.

    Article  CAS  Google Scholar 

  21. Chen H, Gao Y, Liu Y, Luo H. Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg Chem. 2010;49(4):1942.

    Article  CAS  Google Scholar 

  22. Tang X, Gao Y, Chen H, Luo H. Hydrothermal synthesis of lutetium disilicate nanoparticles. J Solid State Chem. 2012;188:38.

    Article  CAS  Google Scholar 

  23. Ganvir A, Joshi S, Markocsan N, Vassen R. Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Mater Des. 2018;144:192.

    Article  CAS  Google Scholar 

  24. Zhou X, He L, Cao X, Xu Z, Mu R, Sun J, Yuan J, Zou B. La2(Zr0.7Ce0.3)2O7 thermal barrier coatings prepared by electron beam-physical vapor deposition that are resistant to high temperature attack by molten silicate. Corros Sci. 2016;115:143.

    Article  CAS  Google Scholar 

  25. Liu J, Zhang L, Liu Q, Cheng L, Wang Y. Structure design and fabrication of environmental barrier coatings for crack resistance. J Eur Ceram Soc. 2014;34(8):2005.

    Article  CAS  Google Scholar 

  26. Escudero A, Alba MD, Becerro AI. Polymorphism in the Sc2Si2O7–Y2Si2O7 system. J Solid State Chem. 2007;180(4):1436.

    Article  CAS  Google Scholar 

  27. Poerschke DL, Jackson RW, Levi CG. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu Rev Mater Res. 2017;47(1):297.

    Article  CAS  Google Scholar 

  28. Liu B, Wang J, Li F, Wang J, Zhou Y. Mechanism of mono-vacancy and oxygen permeability in Y2SiO5 orthosilicate studied by first-principles calculations. J Am Ceram Soc. 2012;95(3):1093.

    CAS  Google Scholar 

  29. Feng J, Xiao B, Zhou R, Pan W. Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 2013;61(19):7364.

    Article  CAS  Google Scholar 

  30. Liu B, Wang J, Li F, Sun L, Wang J, Zhou Y. Investigation of native point defects and nonstoichiometry mechanisms of two yttrium silicates by first-principles calculations. J Am Ceram Soc. 2013;96(10):3304.

    CAS  Google Scholar 

  31. Feng J, Shian S, Xiao B, Clarke DR. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys Rev B. 2014;90(9):094102.

    Article  CAS  Google Scholar 

  32. Liu Y, Liu B, Xiang H, Zhou Y, Nian H, Chen H, Yang G, Gao Y. Theoretical investigation of anisotropic mechanical and thermal properties of ABO3 (A = Sr, Ba; B = Ti, Zr, Hf) perovskites. J Am Ceram Soc. 2018;101(8):3527.

    Article  CAS  Google Scholar 

  33. Liu Y, Zhang W, Wang B, Sun L, Li F, Xue Z, Zhou G, Liu B, Nian H. Theoretical and experimental investigations on high temperature mechanical and thermal properties of BaZrO3. Ceram Int. 2018;44(14):16475.

    Article  CAS  Google Scholar 

  34. Asadikiya M, Foroughi P, Zhong Y. Re-evaluation of the thermodynamic equilibria on the zirconia-rich side of the ZrO2–YO1.5 system. Calphad. 2018;61:264.

    Article  CAS  Google Scholar 

  35. Yang J, Shahid M, Wan C, Jing F, Pan W. Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations. J Eur Ceram Soc. 2017;37(2):689.

    Article  CAS  Google Scholar 

  36. Bakan E, Mack DE, Mauer G, Vaßen R, Troczynski T. Gadolinium zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc. 2014;97(12):4045.

    Article  CAS  Google Scholar 

  37. Wang C, Wang Y, Fan S, You Y, Wang L, Yang C, Sun X, Li X. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying. J Alloys Compd. 2015;649:1182.

    Article  CAS  Google Scholar 

  38. Vargas Garcia JR, Goto T. Thermal barrier coatings produced by chemical vapor deposition. Sci Technol Adv Mater. 2003;4(4):397.

    Article  CAS  Google Scholar 

  39. Drexler JM, Shinoda K, Ortiz AL, Li D, Vasiliev AL, Gledhill AD, Sampath S, Padture NP. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2010;58(20):6835.

    Article  CAS  Google Scholar 

  40. Drexler JM, Gledhill AD, Shinoda K, Vasiliev AL, Reddy KM, Sampath S, Padture NP. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23(21):2419.

    Article  CAS  Google Scholar 

  41. Drexler JM, Ortiz AL, Padture NP. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 2012;60(15):5437.

    Article  CAS  Google Scholar 

  42. Yan K, Guo H-B, Peng H, Gong S-K. Oxidation behaviour of electron beam physical vapour deposition β-NiAlHf coatings at 1100 °C in dry and humid atmospheres. Rare Met. 2016;35(7):513.

    Article  CAS  Google Scholar 

  43. Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28(7):1405.

    Article  CAS  Google Scholar 

  44. Levi CG, Hutchinson JW, Vidal-Sétif M-H, Johnson CA. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012;37(10):932.

    Article  CAS  Google Scholar 

  45. Wu RT, Osawa M, Yokokawa T, Kawagishi K, Harada H. Degradation mechanisms of an advanced jet engine service-retired TBC component. J Solid Mech Mater Eng. 2010;4(2):119.

    Article  Google Scholar 

  46. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci. 2001;46(5):505.

    Article  Google Scholar 

  47. Mercer C, Faulhaber S, Evans AG, Darolia R. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta Mater. 2005;53(4):1029.

    Article  CAS  Google Scholar 

  48. Krämer S, Yang J, Levi CG, Johnson CA. Thermomechanical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J Am Ceram Soc. 2006;89(10):3167.

    Article  CAS  Google Scholar 

  49. Zhang XF, Zhou KS, Xu W, Chen BY, Song JB, Liu M. In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO–MgO–Al2O3–SiO2) corrosion. Surf Coat Technol. 2015;261:54.

    Article  CAS  Google Scholar 

  50. Zhao H, Levi CG, Wadley HNG. Molten silicate interactions with thermal barrier coatings. Surf Coat Technol. 2014;251:74.

    Article  CAS  Google Scholar 

  51. Xu J, Chen HF, Yang G, Luo HJ, Gao YF. Elements diffusion and phase transitions in Yb/Y co-doped zirconia ceramic under molten-salt corrosive environment. Chin J Mater Res. 2006;30(8):627.

    Google Scholar 

  52. Susnitzky DW, Hertl W, Carter CB. Destabilization of zirconia thermal barriers in the presence of V2O5. J Am Ceram Soc. 1988;71(11):992.

    Article  CAS  Google Scholar 

  53. Park SY, Kim JH, Kim MC, Song HS, Park CG. Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surf Coat Technol. 2005;190(2):357.

    Article  CAS  Google Scholar 

  54. Nejati M, Rahimipour MR, Mobasherpour I. Evaluation of hot corrosion behavior of CSZ, CSZ/micro Al2O3 and CSZ/nano Al2O3 plasma sprayed thermal barrier coatings. Ceram Int. 2014;40(3):4579.

    Article  CAS  Google Scholar 

  55. Guo L, Yan Z, Yu J, Zhang C, Li M, Ye F, Ji V. Hot corrosion behavior of TiO2 doped, Yb2O3 stabilized zirconia exposed to V2O5 + Na2SO4 molten salt at 700–1000 °C. Ceram Int. 2018;44(1):261.

    Article  CAS  Google Scholar 

  56. Batista C, Portinha A, Ribeiro RM, Teixeira V, Oliveira CR. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts. Surf Coat Technol. 2006;200(24):6783.

    Article  CAS  Google Scholar 

  57. Tsai PC, Lee JH, Hsu CS. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf Coat Technol. 2007;201(9):5143.

    Article  CAS  Google Scholar 

  58. Doleker KM, Ahlatci H, Karaoglanli AC. Investigation of isothermal oxidation behavior of thermal barrier coatings (TBCs) consisting of YSZ and multilayered YSZ/Gd2Zr2O7 ceramic layers. Oxid Met. 2017;88(1–2):109.

    Article  CAS  Google Scholar 

  59. Mahade S, Curry N, Björklund S, Markocsan N, Nylén P. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf Coat Technol. 2015;283:329.

    Article  CAS  Google Scholar 

  60. Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.

    Article  CAS  Google Scholar 

  61. Vassen R, Stuke A, Stöver D. Recent developments in the field of thermal barrier coatings. J Therm Spray Technol. 2009;18(2):181.

    Article  CAS  Google Scholar 

  62. Liu B, Wang JY, Zhou YC, Liao T, Li FZ. Theoretical elastic stiffness, structure stability and thermal conductivity of LaZrO pyrochlore. Acta Mater. 2007;55(9):2949.

    Article  CAS  Google Scholar 

  63. Yang L, Zhu C, Sheng Y, Nian H, Li Q, Song P, Lu W, Yang J, Liu B. Investigation of mechanical and thermal properties of rare earth pyrochlore oxides by first-principles calculations. J Am Ceram Soc. 2019;102(5):2830.

    CAS  Google Scholar 

  64. Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D. Thermal conductivity and thermal expansion coefficients of lanthanum rare-earth-element zirconates system. J Am Ceram Soc. 2010;86(8):1338.

    Article  Google Scholar 

  65. Subramanian MA, Aravamudan G, Rao GVS. Oxide pyrochlores—a review. Prog Solid State Chem. 1983;15(2):55.

    Article  CAS  Google Scholar 

  66. Liu B, Wang JY, Li FZ, Zhou YC. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 2010;58(13):4369.

    Article  CAS  Google Scholar 

  67. Feng J, Xiao B, Zhou R, Pan W. Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr Mater. 2013;68(9):727.

    Article  CAS  Google Scholar 

  68. Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, Miranzo P, Osendi MI. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc. 2002;85(12):3031.

    Article  CAS  Google Scholar 

  69. Feng J, Xiao B, Zhou R, Pan W. Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scr Mater. 2013;69(5):401.

    Article  CAS  Google Scholar 

  70. Feng J, Xiao B, Qu ZX, Zhou R, Pan W. Mechanical properties of rare earth stannate pyrochlores. Appl Phys Lett. 2011;99(20):201909.

    Article  CAS  Google Scholar 

  71. Feng J, Xiao B, Wan CL, Qu ZX, Huang ZC, Chen JC, Zhou R, Pan W. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 2011;59(4):1742.

    Article  CAS  Google Scholar 

  72. Shen Z, He L, Xu Z, Mu R, Huang G. Rare earth oxides stabilized La2Zr2O7 TBCs: EB-PVD, thermal conductivity and thermal cycling life. Surf Coat Technol. 2019;357:427.

    Article  CAS  Google Scholar 

  73. Dwivedi G, Tan Y, Viswanathan V, Sampath S. Process-property relationship for air plasma-sprayed gadolinium zirconate coatings. J Therm Spray Technol. 2015;24(3):454.

    Article  CAS  Google Scholar 

  74. Zhu C, Liu Y, Wang D, Zhou Y, Yang G, Chen H, Gao Y, Liu B. Improved resistance of lanthanum zirconate coatings to calcium–magnesium–alumina–silicate corrosion through composition tailoring. Ceram Int. 2018;44(12):13908.

    Article  CAS  Google Scholar 

  75. Habibi MH, Wang L, Guo S. An investigation on hot corrosion resistance of plasma sprayed composite YSZ-Gd2Zr2O7 and Gd2Zr2O7 thermal barrier coatings in simulated turbine environment at 1050 °C. In: ASME 2012 International Mechanical Engineering Congress and Exposition; 2012. 905.

  76. Yin Y, Ma W, Jin X, Li X, Bai Y, Jia R, Dong H. Hot corrosion behavior of the La2(Zr0.7Ce0.3)2O7 ceramic in molten V2O5 and a Na2SO4 + V2O5 salt mixture. J Alloys Compd. 2016;689:123.

    Article  CAS  Google Scholar 

  77. Chen H, Gao Y, Tao S, Liu Y, Luo H. Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing. J Alloys Compd. 2009;486(1):391.

    Article  CAS  Google Scholar 

  78. Goldstein HW, Walsh PN, White D. Rare earths. I. Vaporization of La2O3 and Nd2O3: dissociation energies of gaseous LaO and NdO. J Phys Chem. 1961;65(8):1400.

    Article  CAS  Google Scholar 

  79. Cao XQ, Vassen R, Jungen W, Schwartz S, Tietz F, Stöver D. Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc. 2010;84(9):2086.

    Article  Google Scholar 

  80. Saruhan B, Francois P, Fritscher K, Schulz U. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs. Surf Coat Technol. 2004;182(2):175.

    Article  CAS  Google Scholar 

  81. Borom MP, Johnson CA, Peluso LA. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf Coat Technol. 1996;86–87(96):116.

    Article  Google Scholar 

  82. Gao L, Guo H, Gong S, Xu H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J Eur Ceram Soc. 2014;34(10):2553.

    Article  CAS  Google Scholar 

  83. Zheng C, Wu NQ, Singh J, Mao SX. Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate–vanadate salt. Thin Solid Films. 2003;443(1):46.

    Google Scholar 

  84. Yugeswaran S, Kobayashi A, Ananthapadmanabhan PV. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J Eur Ceram Soc. 2012;32(4):823.

    Article  CAS  Google Scholar 

  85. Zhu C, Yang L, Zhang C, Yang G, Chen H, Li Q, Li F, Gao Y, Liu B. Influence of composition on molten sulfate–vanadate salt corrosion resistance of lanthanum zirconate coatings. Ceram Int. 2018;44(18):22911.

    Article  CAS  Google Scholar 

  86. Eils NK, Mechnich P, Braue W. Effect of CMAS deposits on MOCVD coatings in the system Y2O3–ZrO2: phase relationships. J Am Ceram Soc. 2013;96(10):3333.

    CAS  Google Scholar 

  87. Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surf Coat Technol. 2013;235:165.

    Article  CAS  Google Scholar 

  88. Habibi MH, Wang L, Guo SM. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. J Eur Ceram Soc. 2012;32(8):1635.

    Article  CAS  Google Scholar 

  89. Yang G, Mao X, Wang D, Chen H, Liu B, Cui Y, Luo H, Gao Y. Fabrication of columnar structured lanthanum zirconate films by laser CVD. J Am Ceram Soc. 2017;100(9):4232.

    Article  CAS  Google Scholar 

  90. Wang D, Liu Y, Zhu C, Yang G, Liu B, Chen H, Cui Y, Luo H, Gao Y. Preparation of lanthanum zirconate films with a widely controllable La/Zr ratio by LCVD. Ceram Int. 2018;44(9):10621.

    Article  CAS  Google Scholar 

  91. Ogawa T, Otani N, Yokoi T, Fisher CAJ, Kuwabara A, Moriwake H, Yoshiya M, Kitaoka S, Takata M. Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Phys Chem Chem Phys. 2018;20(24):16518.

    Article  CAS  Google Scholar 

  92. Opila EJ. Oxidation and volatilization of silica formers in water vapor. J Am Ceram Soc. 2003;86(8):1238.

    Article  CAS  Google Scholar 

  93. Park DJ, Jung YI, Kim HG, Park JY, Koo YH. Oxidation behavior of silicon carbide at 1200 °C in both air and water-vapor-rich environments. Corros Sci. 2014;88:416.

    Article  CAS  Google Scholar 

  94. More KL, Tortorelli PF, Ferber MK, Keiser JR. Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc. 2000;83(1):211.

    Article  CAS  Google Scholar 

  95. Lee KN, Fox DS, Bansal NP. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J Eur Ceram Soc. 2005;25(10):1705.

    Article  CAS  Google Scholar 

  96. Maier N, Nickel KG, Rixecker G. High temperature water vapour corrosion of rare earth disilicates (Y, Yb, Lu)2Si2O7 in the presence of Al(OH)3 impurities. J Eur Ceram Soc. 2007;27(7):2705.

    Article  CAS  Google Scholar 

  97. Bakan E, Marcano D, Zhou D, Sohn YJ, Mauer G, Vaßen R. Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. J Therm Spray Technol. 2017;26(1):1.

    Google Scholar 

  98. Eaton HE, Linsey GD, More KL, Kimmel JB, Price JR, Miriyala N. EBC protection of SiC/SiC composites in the gas turbine combustion environment: continuing evaluation and refurbishment considerations. In: Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air, Munich; 2000. V004T02A018.

  99. Al Nasiri N, Patra N, Horlait D, Jayaseelan DD, Lee WE, Smialek J. Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites. J Am Ceram Soc. 2016;99(2):589.

    Article  CAS  Google Scholar 

  100. Zou B, Khan ZS, Fan X, Huang W, Gu L, Wang Y, Xu J, Tao S, Yang K, Ma H, Cao X. A new double layer oxidation resistant coating based on Er2SiO5/LaMgAl11O19 deposited on C/SiC composites by atmospheric plasma spraying. Surf Coat Technol. 2013;219:101.

    Article  CAS  Google Scholar 

  101. Fernández-Carrión AJ, Allix M, Becerro AI. Thermal expansion of rare-earth pyrosilicates. J Am Ceram Soc. 2013;96(7):2298.

    Article  CAS  Google Scholar 

  102. Tian Z, Zheng L, Wang J, Wan P, Li J, Wang J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc. 2016;36(1):189.

    Article  CAS  Google Scholar 

  103. Tian Z, Zheng L, Li Z, Li J, Wang J. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J Eur Ceram Soc. 2016;36(11):2813.

    Article  CAS  Google Scholar 

  104. Wang Y, Liu J. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor. J Eur Ceram Soc. 2009;29(11):2163.

    Article  CAS  Google Scholar 

  105. Ueno S, Ohji T, Lin HT. Designing lutetium silicate environmental barrier coatings for silicon nitride and its recession behavior in steam jets. J Ceram Process Res. 2006;7(1):20.

    Google Scholar 

  106. Ueno S, Jayaseelan DD, Ohji T. Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers. J Ceram Process Res. 2004;5(4):355.

    Google Scholar 

  107. Wen H, Dong S, He P, Wang Z, Zhou H, Zhang X. Sol–gel synthesis and characterization of ytterbium silicate powders. J Am Ceram Soc. 2007;90(12):4043.

    CAS  Google Scholar 

  108. Zhong X, Niu Y, Li H, Zeng Y, Zheng X, Ding C, Sun J. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. J Am Ceram Soc. 2017;100(5):1896.

    Article  CAS  Google Scholar 

  109. Ueno S, Jayaseelan DD, Ohji T, Lin HT. Recession mechanism of Lu2Si2O7 phase in high speed steam jet environment at high temperatures. Ceram Int. 2006;32(7):775.

    Article  CAS  Google Scholar 

  110. Ramasamy S, Tewari SN, Lee KN, Bhatt RT, Fox DS. Environmental durability of slurry based mullite–gadolinium silicate EBCs on silicon carbide. J Eur Ceram Soc. 2011;31(6):1123.

    Article  CAS  Google Scholar 

  111. Richards BT, Wadley HNG. Plasma spray deposition of tri-layer environmental barrier coatings. J Eur Ceram Soc. 2014;34(12):3069.

    Article  CAS  Google Scholar 

  112. He S, Xiong X, He L. High temperature oxidation behavior of new Yb2SiO5 environmental barrier coatings at 1400 °C. J Mater Eng. 2015;43(04):37.

    CAS  Google Scholar 

  113. Gao L, Guo H, Wei L, Li C, Gong S, Xu H. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceram Int. 2015;41(7):8305.

    Article  CAS  Google Scholar 

  114. Xu J, Sarin VK, Dixit S, Basu SN. Stability of interfaces in hybrid EBC/TBC coatings for Si-based ceramics in corrosive environments. Int J Refract Met Hard Mater. 2015;49:339.

    Article  CAS  Google Scholar 

  115. Basu SN, Kulkarni T, Wang HZ, Sarin VK. Functionally graded chemical vapor deposited mullite environmental barrier coatings for Si-based ceramics. J Eur Ceram Soc. 2008;28(2):437.

    Article  CAS  Google Scholar 

  116. Zhang X, Zhou K, Liu M, Deng C, Deng C, Niu S, Xu S, Su Y. CMAS corrosion and thermal cycle of Al-modified PS-PVD environmental barrier coating. Ceram Int. 2018;44(13):15959.

    Article  CAS  Google Scholar 

  117. Chen HF, Klemm H. Environmental barrier coatings for silicon nitride. Key Eng Mater. 2011;484:139.

    Article  CAS  Google Scholar 

  118. Goto T. High-speed deposition of zirconia films by laser-induced plasma CVD. Solid State Ion. 2004;172(1–4):225.

    Article  CAS  Google Scholar 

  119. Botero CA, Jimenez-Piqué E, Martín R, Kulkarni T, Sarin VK, Llanes L. Influence of temperature and hot corrosion on the micro–nanomechanical behavior of protective mullite EBCs. Int J Refract Met Hard Mater. 2015;49:383.

    Article  CAS  Google Scholar 

  120. Eaton HE, Linsey GD. Accelerated oxidation of SiC CMC’s by water vapor and protection via environmental barrier coating approach. J Eur Ceram Soc. 2002;22(14):2741.

    Article  CAS  Google Scholar 

  121. Liu J, Zhang L, Hu F, Yang J, Cheng L, Wang Y. Polymer-derived yttrium silicate coatings on 2D C/SiC composites. J Eur Ceram Soc. 2013;33(2):433.

    Article  CAS  Google Scholar 

  122. Ueno S, Jayaseelan DD, Ohji T. Development of oxide-based EBC for silicon nitride. Int J Appl Ceram Technol. 2004;1(4):362.

    Article  CAS  Google Scholar 

  123. Ueno S, Ohji T, Lin HT. Recession behavior of Yb2Si2O7 phase under high speed steam jet at high temperatures. Corros Sci. 2008;50(1):178.

    Article  CAS  Google Scholar 

  124. Toohey CM. Novel Environmental Barrier Coatings for Resistance Against Degradation by Molten Glassy Deposits in the Presence of Water Vapor. Columbus: Ohio State University; 2011. 44.

    Google Scholar 

  125. Turcer LR, Krause AR, Garces HF, Zhang L, Padture NP. Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7. J Eur Ceram Soc. 2018;38(11):3905.

    Article  CAS  Google Scholar 

  126. Turcer LR, Krause AR, Garces HF, Zhang L, Padture NP. Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7. J Eur Ceram Soc. 2018;38(11):3914.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51602188, 51602187, 51572166 and 51402183), the Program for Professor of Special Appointment (Young Eastern Scholar and Eastern Scholar) at Shanghai Institutions of Higher Learning (Nos. QD2015028, TP2015040 and TP2014041) and the Yunnan Province Science and Technology Major Project (No. 2018ZE009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Yang or Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HF., Zhang, C., Liu, YC. et al. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Met. 39, 498–512 (2020). https://doi.org/10.1007/s12598-019-01307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01307-1

Keywords

Navigation