Advertisement

Rare Metals

pp 1–10 | Cite as

Texture coefficient and band gap tailoring of Fe-doped SnO2 nanoparticles via thermal spray pyrolysis

  • Majibul Haque Babu
  • Bidhan Chandra Dev
  • Jiban PodderEmail author
Article
  • 17 Downloads

Abstract

An investigation of Fe-doping effect on SnO2 thin films was performed in this study using thermal spray pyrolysis (TSP) method. The surface morphology and structural, optical and electrical properties were studied by field energy scanning electron microscope (FESEM), X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy and four-point probe method. FESEM images demonstrate that the surface morphology of the as-deposited films varies when Fe-doping content varies. XRD studies reveal that crystallite size and preferential growth orientations of the films are dependent on Fe-doping concentrations. The grain size is found to decrease with the increase in Fe content. These studies also specify that the films have tetragonal rutile-type structure with mixed secondary phases. The texture coefficient value of (110) plane increases with the concomitant in-plane (220) decrease in higher doping concentrations. The resistivity and the optical absorbance are found to increase with Fe concentration. The direct optical band gap decreases from 3.94 to 3.52 eV with increasing Fe content.

Keywords

SnO2 thin film Thermal spray pyrolysis Texture coefficient Optical band gap 

References

  1. [1]
    Ginley DS, Bright C. Transparent conducting oxides. MRS Bull. 2000;25(8):58.CrossRefGoogle Scholar
  2. [2]
    Chopra KL, Major S, Pandya DK. Transparent conductors: a status review. Thin Solid Films. 1983;102(1):1.CrossRefGoogle Scholar
  3. [3]
    Snaith HJ, Ducati C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 2010;10(4):1259.CrossRefGoogle Scholar
  4. [4]
    Isono T, Fukuda T, Nakagawa K. Highly conductive SnO2 thin films for flat-panel displays. J Soc Inf Disp. 2007;15(2):161.CrossRefGoogle Scholar
  5. [5]
    McDowell MG, Sanderson RJ, Hill IG. Combinatorial study of zinc tin oxide thin-film transistors. Appl Phys Lett. 2008;92(1):013502.CrossRefGoogle Scholar
  6. [6]
    Li Y, Yin W, Deng R. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 2012;4(11):e30.CrossRefGoogle Scholar
  7. [7]
    Nelli P, Faglia G, Sberveglieri G. The aging effect on SnO2 Au thin film sensors: electrical and structural characterization. Thin Solid Films. 2000;371(1–2):249.CrossRefGoogle Scholar
  8. [8]
    Paek SM, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009;9(1):72.CrossRefGoogle Scholar
  9. [9]
    Yan J, Khoo E, Sumboja A. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano. 2010;4(7):4247.CrossRefGoogle Scholar
  10. [10]
    Scott JF. High-dielectric constant thin films for dynamic random access memories (Dram). Annu Rev Mater Sci. 1998;28(1):79.CrossRefGoogle Scholar
  11. [11]
    Luo G, Shen Q, Li Q. Corrosion behavior of SnO2-based electrode ceramics in soda-lime glass liquid. IOP Conf Ser Mater Sci Eng. 2011;18:202025.CrossRefGoogle Scholar
  12. [12]
    Bose C, Kalpana D, Thangadurai P, Ramasamy S. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. J Power Sources. 2002;107(1):138.CrossRefGoogle Scholar
  13. [13]
    Borse RY, Garde AS. Electrical and gas sensing properties of SnO2 thick film resistors pre-pared by screen-printing method. Sens Transducers. 2008;97(10):64.Google Scholar
  14. [14]
    Hudaya C, Jeon BJ, Lee JK. High thermal performance of SnO2: F thin transparent heaters with scattered metal nanodots. ACS Appl Mater Interfaces. 2015;7(1):57.CrossRefGoogle Scholar
  15. [15]
    Bagheri-Mohagheghi M, Shokooh-Saremi M. Electrical, optical and structural properties of Li-doped SnO2 transparent conducting films deposited by the spray pyrolysis technique: a carrier-type conversion study. Semicond Sci Technol. 2004;19(6):764.CrossRefGoogle Scholar
  16. [16]
    Bagheri-Mohagheghi MM, Mehrdad SS. The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique. J Phys D Appl Phys. 2004;37(8):1248.CrossRefGoogle Scholar
  17. [17]
    Ghodsi FE, Mazloom J. Optical, electrical and morphological properties of p-type Mn-doped SnO2 nanostructured thin films prepared by sol–gel process. Appl Phys A. 2012;108(3):693.CrossRefGoogle Scholar
  18. [18]
    Korotcenkov G, Brinzari V, Boris I. (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: doping influence on film morphology. J Mater Sci. 2008;43(8):2761.CrossRefGoogle Scholar
  19. [19]
    Outemzabet R, Doulache M, Trari M. Physical and photoelectrochemical properties of Sb-doped SnO2 thin films deposited by chemical vapor deposition: application to chromate reduction under solar light. Appl Phys A. 2015;119(2):589.CrossRefGoogle Scholar
  20. [20]
    Kimura H, Fukumura T, Koinuma H. Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl Phys Lett. 2002;80(1):94.CrossRefGoogle Scholar
  21. [21]
    Du F, Guo Z, Li G. Hydrothermal synthesis of SnO2 hollow microspheres. Mater Lett. 2005;59(19–20):2563.CrossRefGoogle Scholar
  22. [22]
    Pena J, Perez-Pariente J, Vallet-Regi M. Textural properties of nanocrystalline tin oxide by spray pyrolysis. J Mater Chem. 2003;13(9):2290.CrossRefGoogle Scholar
  23. [23]
    Bagheri-Mohagheghi MM, Shahtahmasebi N, Alinejad MR, Youssefi A, Shokooh-Saremi M. Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique: thermoelectric and p-type conductivity properties. Solid State Sci. 2009;11(1):233.CrossRefGoogle Scholar
  24. [24]
    Ahn HJ, Choi HC, Park KW, Kim SB, Sung YE. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J Phys Chem B. 2004;108(28):9815.CrossRefGoogle Scholar
  25. [25]
    Xu C, Miura N, Yamazoe N. Stabilization of SnO2 ultrafine particles by additives. J Mater Sci. 1992;27(4):963.CrossRefGoogle Scholar
  26. [26]
    Lekshmy SS, Joy K. Structural and optoelectronic properties of indium doped SnO2 thin films deposited by sol gel technique. J Mater Sci Mater Electron. 2014;25(4):1664.CrossRefGoogle Scholar
  27. [27]
    Weibel A, Bouchet R, Boulc F, Knauth P. The problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater. 2005;17(9):2378.CrossRefGoogle Scholar
  28. [28]
    Markmann J, Yamakov V, Weissmüller J. Validating grain size analysis from X-ray line broadening: a virtual experiment. Scripta Mater. 2008;59(1):15.CrossRefGoogle Scholar
  29. [29]
    Williamson G, Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22.CrossRefGoogle Scholar
  30. [30]
    Aragon FH, Coaquira JAH, Gonzalez I, Nagamine LCCM, Macedo WAA, Morais PC. Fe doping effect on the structural, magnetic and surface properties of SnO2 nanoparticles prepared by a polymer precursor method. J Phys D Appl Phys. 2016;49(15):155002.CrossRefGoogle Scholar
  31. [31]
    Nakano S, Muto S, Tanabe T. Change in mechanical properties of ion-irradiated ceramics studied by nanoindentation. Mater Trans. 2006;47(1):112.CrossRefGoogle Scholar
  32. [32]
    Mir FA, Batoo KM. Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb-doped SnO2 thin films. Appl Phys A. 2016;122(4):418.CrossRefGoogle Scholar
  33. [33]
    Barret CS, Massalki TB. Structure of metals. Oxford: Pergamon; 1980. 541Google Scholar
  34. [34]
    Turgut G, Erdal S, Mehmet Y, Selim MC, Yılmaz MC, Turgut U, Refik D. The variation of the features of SnO2 and SnO2: F thin films as a function of V dopant. J Mater Sci Mater Electron. 2014;25(6):2808.CrossRefGoogle Scholar
  35. [35]
    Turgut G, Keskenler EF, Aydın S, Erdal S, Seydi D, Bahattin D, Mehmet E. Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films. Superlatt Microstruct. 2013;56(4):107.CrossRefGoogle Scholar
  36. [36]
    Tripathi A, Shukla RK. Blue shift in optical band gap of sol–gel derived Sn1−xZnxO2 polycrystalline thin film. J Mater Sci Mater Electron. 2013;24(10):4014.CrossRefGoogle Scholar
  37. [37]
    Turgut G, Erdal S. Synthesis and characterization of Mo doped SnO2 thin films with spray pyrolysis. Superlatt Microstruct. 2014;69(5):175.CrossRefGoogle Scholar
  38. [38]
    Rodrigues ECPE, Olivi P. Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors. J Phys Chem Solids. 2003;64(7):1105.CrossRefGoogle Scholar
  39. [39]
    Turgut G. Effect of Ta doping on the characteristic features of spray-coated SnO2. Thin Solid Films. 2015;594(Part A):56.CrossRefGoogle Scholar
  40. [40]
    Wang JT, Xiang LS, Wei WL, Xin HZ, Jian NW, Leo P, Kevin DS, Philip MR, Masahiro H, Keiko T. Influence of preferred orientation on the electrical conductivity of fluorine-doped tin oxide films. Sci Rep. 2014;4:3679.CrossRefGoogle Scholar
  41. [41]
    Elangovan E, Ramamurthi K. Optoelectronic properties of spray deposited SnO2: F thin films for window materials in solar cells. J Optoelectron Adv Mater. 2003;5(1):45.Google Scholar
  42. [42]
    Allag A, Saad R, Ouahab A, Attouche H, Kouidri N. Optoelectronic properties of SnO2 thin films sprayed at different deposition times. Chin Phys B. 2016;25(4):046801.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations