Rare Metals

, Volume 38, Issue 10, pp 905–913 | Cite as

Electronic structure and thermal properties of bulk and nano-layer of TAlO2 (T = Cu, Ag and Au) delafossite oxides

  • Hossein Asghar Rahnamaye AliabadEmail author
  • Zahra Sabazadeh
  • Azam Abareshi


In this paper, we report the effect of temperature and carrier concentrations on the structural, electronic and thermoelectric (TE) properties of TAlO2 (T = Cu, Ag and Au) compounds in the bulk and nano-layer structures using full potential-linearized augmented plane wave (FP-LAPW) method combined with Boltzmann transport theory. The results show that the TE properties are controlled by the temperature and carrier concentrations. P-type doping of TAlO2 (T = Cu, Ag and Au) compounds has better TE figure of merit (ZT) than n-type doping. High ZT of 0.984 is achieved for the bulk structure of the AgAlO2 compound, while it is about 1.234 for the nano-layer structure. Hence, among these compounds, the nano-layer of AgAlO2 is a good candidate for TE applications.


Electronic and thermoelectric materials Bulk and nano-layer Density functional theory (DFT) calculations 



We thank Prof. Blaha and Prof. Madsen of Vienna University of Technology, Austria, for their help in the use of WIEN2k and BoltzTrap packages.


  1. [1]
    Bhamu KC, Priolkar KR. Electronic and optical properties of AgAlO2: a first-principles study. Mater Chem Phys. 2017;190:114.CrossRefGoogle Scholar
  2. [2]
    Sinnarasa I, Thimont Y, Presmanes L, Barnabe A, Tailhades P. Thermoelectric and transport properties of delafossite CuCrO2: Mg thin films prepared by RF magnetron sputtering. Nanomaterials. 2017;7(7):157.CrossRefGoogle Scholar
  3. [3]
    Rahnamaye Aliabad HA, Basirat S, Ahmad I. Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach. J Mater Sci Mater Electron. 2017;28(21):16476.CrossRefGoogle Scholar
  4. [4]
    Rahnamaye Aliabad HA, Yalcin Battal G. Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect. J Mater Sci Mater Electron. 2017;28(20):14954.CrossRefGoogle Scholar
  5. [5]
    Rahnamaye Aliabad HA, Barzanuni Z, Ramezani Sani S, Ahmad I, Asadabadi SJ, Vaezi H, Dastras M. Thermoelectric and phononic properties of (Gd, Tb)MnO3 compounds: DFT calculations. J Alloys Compd. 2017;690:942.CrossRefGoogle Scholar
  6. [6]
    Rahnamaye Aliabad HA, Kheirabadi M. Thermoelectricity and superconductivity in pure and doped Bi2Te3 with Se. Physica B. 2014;433(1):157.CrossRefGoogle Scholar
  7. [7]
    Rahnamaye Aliabad HA, Ghazanfari M, Ahmad I, Saeed MA. Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput Mater Sci. 2012;65:509.CrossRefGoogle Scholar
  8. [8]
    Rahnamaye Aliabad HA, Parvizi Z. Structural, electronical and thermal properties of XVO4 (X = Y, Gd) vanadate crystals. Comput Mater Sci. 2014;93:125.CrossRefGoogle Scholar
  9. [9]
    Ruttanapun C, Kosalwat W, Rudradawong C, Jindajitawat P, Buranasiri P, Naenkieng D, Boonyopakorn N, Harnwunggmoung A, Thowladda W, Neeyakorn W, Thanachayanont C, Charoenphakdee A, Wichainchai A. Reinvestigation thermoelectric properties of CuAlO2. Energy Proced. 2014;56:65.CrossRefGoogle Scholar
  10. [10]
    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389(6654):939.CrossRefGoogle Scholar
  11. [11]
    Suriwong T, Thongtem T, Thongtem S. Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating. Curr Appl Phys. 2014;14(9):1257.CrossRefGoogle Scholar
  12. [12]
    Berardan D, Guilmeau E, Maignan A, Raveau B. In2O3: Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 2008;146(1–2):97.CrossRefGoogle Scholar
  13. [13]
    Ahmed J, Blakely CK, Pakash J, Bruno SR, Yu M, Wu Y, Poltavets VV. Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J Alloys Compd. 2014;591:275.CrossRefGoogle Scholar
  14. [14]
    Akyildiz H. Synthesis of CuAlO2 from chemically precipitated nano-sized precursors. Ceram Int. 2015;41(10):14108.CrossRefGoogle Scholar
  15. [15]
    Gao S, Zhao Y, Gou P, Chen N, Xie Y. Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnology. 2003;14(5):538.CrossRefGoogle Scholar
  16. [16]
    Schwarz K, Blaha P, Madsen GKH. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun. 2002;147(1–2):71.CrossRefGoogle Scholar
  17. [17]
    Georg K, Madsen H, Singh DJ, BoltzTra P. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006;175(1):67.CrossRefGoogle Scholar
  18. [18]
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.CrossRefGoogle Scholar
  19. [19]
    Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett. 2009;102(22):226401.CrossRefGoogle Scholar
  20. [20]
    Rahnamaye Aliabad HA, Bazrafshan M, Vaezi H, Yousaf M, Munir J, Saeed MA. Optoelectronic properties of pure and co doped indium oxide by hubbard and modified Becke–Johnson exchange potentials. Chin Phys Lett. 2013;30(12):127101.CrossRefGoogle Scholar
  21. [21]
    Rahnamaye Aliabad HA. Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke–Johnson exchange potentials. Chin Phys B. 2015;24(9):097102.CrossRefGoogle Scholar
  22. [22]
    Rahnamaye Aliabad HA, Fathabadi M, Ahmad I. Optoelectronic properties of KDP by first principle calculations. Int J Quantum Chem. 2013;113(6):865.CrossRefGoogle Scholar
  23. [23]
    Rahnamaye Aliabad HA. Theoretical and experimental studies of la- substituted In2O3 nano-layer via the modified Becke–Johnson (mBJ) potential. Optik. 2018;175:268.CrossRefGoogle Scholar
  24. [24]
    Hosseini SM, Rahnamaye Aliabad HA, Kompany A. Electronic and thermoelectric properties of pure and alloys In2O3 transparent conductors. Mod Phys Lett B. 2010;24(21):2251.CrossRefGoogle Scholar
  25. [25]
    Kumar K, Persson C. Structural, electronic and optical properties of silver delafossite oxides: a first-principles study with hybrid functional. Phys B. 2013;422:20.CrossRefGoogle Scholar
  26. [26]
    Nakanishi A, Fukushima T, Uede H, Katayama-Yoshida H. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: charge-excitation induced Ueff < 0. Physica C (Amst). 2015;519:168.CrossRefGoogle Scholar
  27. [27]
    Nakanishi A, Katayama-Yoshida H. Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2. Solid State Commun. 2012;152:2078.CrossRefGoogle Scholar
  28. [28]
    Kandpal HC, Seshadri R. First-principles electronic structure of the delafossites ABO2 (A = Cu, Ag, Au; B = Al, Ga, Sc, In, Y): evolution of d10–d10 interactions. Solid State Sci. 2002;4:1045.CrossRefGoogle Scholar
  29. [29]
    Kumar M, Zhao H, Persson C. Study of band-structure, optical properties and native defects in AIBIIIO2 (AI  = Cu or Ag, BIII  = Al, Ga or In) delafossites. Semicond Sci Technol. 2013;28:065003.CrossRefGoogle Scholar
  30. [30]
    Zhou T, Zhang C, Zhang H, Xiu F, Yang Z. Enhanced thermoelectric properties of Dirac semimetal Cd3As2. Inorg Chem Front. 2016;3:1637.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran

Personalised recommendations