Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion

Abstract

The pressure dependence of structural, electronic and thermoelectric properties of half-Heusler ZrNiPb was investigated in the bulk and nanosheet structures. In order to obtain the accurate results, the full-potential (linearized) augmented plane-wave (FP(L)APW) calculations were performed with the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson (mBJ) plus spin–orbit coupling (SOC). Obtained band gap values are in close agreement with the experimental results (< 0.5 eV). The variations of the thermoelectric properties of the ZrNiPb were studied under different temperatures, carrier concentrations and the hydrostatic pressures. The results show that the hydrostatic pressure decreases the lattice constant value. The band structure calculations display that the band gap increases with pressure for the bulk state and it is 0 for the nanosheet of ZrNiPb [010]. The highest value of figure of merit (ZT) = 0.95 is found at 9.378 GPa at a carrier concentration of n = 1 × 1018 cm−3 at 250 K for p-type of ZrNiPb.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. [1]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation and applications. Adv Mater. 2017;29(20):1602013.

    Google Scholar 

  2. [2]

    Zheng G, Su X, Xie H, Shu Y, Liang T, She X, Liu W, Yan Y, Zhang Q, Uher C, Kanatzidis MG, Tang X. High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy Environ Sci. 2017;10(12):2638.

    CAS  Google Scholar 

  3. [3]

    Zheng G, Su X, Li X, Liang T, Xie H, She X, Yan Y, Uher C, Kanatzidis MG, Tang X. Toward high-thermoelectric-performance large-size nanostructured BiSbTe alloys via optimization of sintering-temperature distribution. Adv Energy Mater. 2016;6(13):1600595.

    Google Scholar 

  4. [4]

    Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, Cheng X, Yang D, Chi H, Tang X, Zhang Q, Uher C. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun. 2014;5:4908.

    CAS  Google Scholar 

  5. [5]

    Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, Tan G, Yan Y, Tang X, Uher C, Snyder GJ. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater. 2015;5(5):1401391.

    Google Scholar 

  6. [6]

    Wang D, Wang G. First-principles study the elastic constant, electronic structure and thermoelectric properties of Zr1−xHfxNiPb (x = 0, 0.25, 0.5, 0.75, 1). Phys Lett A. 2017;381(8):801.

    CAS  Google Scholar 

  7. [7]

    Rahnamaye Aliabad HA, Barzanuni Z, Ramezani Sani S, Ahmad I, Asadabadi SJ, Vaezi H, Dastras M. Thermoelectric and phononic properties of (Gd, Tb)MnO3 compounds: DFT calculations. J Alloys Compd. 2017;690:942.

    CAS  Google Scholar 

  8. [8]

    Hong AJ, Gong JJ, Liu L, Yan ZB, Ren ZF, Liu JM. Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron–phonon coupling and strong bonding anharmonicity. J Mater Chem C. 2016;4(15):3281.

    CAS  Google Scholar 

  9. [9]

    Xue QY, Liu HJ, Fan DD, Cheng L, Zhao BY, Shi J. LaPtSb: a half-Heusler compound with high thermoelectric performance. Phys Chem Chem Phys. 2016;18(27):17912.

    CAS  Google Scholar 

  10. [10]

    Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun. 2015;6:8144.

    Google Scholar 

  11. [11]

    Fu C, Zhu T, Liu Y, Xie H, Zhao X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit ZT > 1. Energy Environ Sci. 2015;8(1):216.

    CAS  Google Scholar 

  12. [12]

    Page A, Poudeu PFP, Uher C. A first-principles approach to half-Heusler thermoelectrics: accelerated prediction and understanding of material properties. J Materiomics. 2016;2(2):104.

    Google Scholar 

  13. [13]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G, Ren Z. Thermoelectric properties of n-type ZrNiPb-based half-Heuslers. Chem Mater. 2017;29(2):867.

    CAS  Google Scholar 

  14. [14]

    Guo SD. Thermoelectric properties of half-Heusler ZrNiPb by using first principles calculations. RSC Adv. 2016;6(53):47953.

    CAS  Google Scholar 

  15. [15]

    Wang G, Wang D. Electronic structure and thermoelectric properties of Pb-based half-Heusler compounds: ABPb (A = Hf, Zr; B = Ni, Pd). J Alloys Compd. 2016;682:375.

    CAS  Google Scholar 

  16. [16]

    Wang D, Wang G, Li W. Ni substitution enhanced thermoelectric properties of ZrPd1−xNixPb (x = 0, 0.25, 0.5, 0.75, 1). J Alloys Compd. 2017;692:599.

    CAS  Google Scholar 

  17. [17]

    Gautier R, Zhang X, Hu L, Yu L, Zunger A. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat Chem. 2015;7(4):308.

    CAS  Google Scholar 

  18. [18]

    Culp SR, Simonson JW, Poon SJ, Ponnambalam V, Edwards J, Tritt TM. (Zr, Hf)Co(Sb, Sn) half-Heusler phases as high-temperature (> 700 °C) p-type thermoelectric materials. Appl Phys Lett. 2008;93(2):022105.

    Google Scholar 

  19. [19]

    Xin JZ, Fu CG, Shi WJ, Li QW, Auffermann G, Qi YP, Zhu TJ, Zhao XB, Felser C. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Met. 2018;37(4):274.

    CAS  Google Scholar 

  20. [20]

    Guan MJ, Qiu PF, Song QF, Yang J, Ren DD, Shi X, Chen LD. Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides. Rare Met. 2018;37(4):282.

    CAS  Google Scholar 

  21. [21]

    Zou TH, Xie WJ, Widenmeyer M, Xiao XX, Qin XY, Weidenkaff A. Enhancing point defect scattering in copper antimony selenides via Sm and S co-doping. Rare Met. 2018;37(4):290.

    CAS  Google Scholar 

  22. [22]

    Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308.

    CAS  Google Scholar 

  23. [23]

    Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Met. 2018;37(4):326.

    CAS  Google Scholar 

  24. [24]

    Feng D, Chen YX, Fu LW, Li J, He JQ. SnSe + Ag2Se composite engineering with ball milling for enhanced thermoelectric performance. Rare Met. 2018;37(4):333.

    CAS  Google Scholar 

  25. [25]

    Qin BC, Xiao Y, Zhou YM, Zhao LD. Thermoelectric transport properties of Pb–Sn–Te–Se system. Rare Met. 2018;37(4):343.

    CAS  Google Scholar 

  26. [26]

    Son JH, Oh MW, Kim BS, Park SD. Optimization of thermoelectric properties of n-type Bi2(Te, Se)3 with optimizing ball milling time. Rare Met. 2018;37(4):351.

    CAS  Google Scholar 

  27. [27]

    Ovsyannikov SV, Shchennikov VV. Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe. Appl Phys Lett. 2007;90(12):122103.

    Google Scholar 

  28. [28]

    Ovsyannikov SV, Grigoreva YuA, Vorontsov GV, Lukyanova LN, Kutasov VA, Shchennikov VV. Thermoelectric properties of p-Bi2−xSbxTe3 solid solutions under pressure. Phys Solid State. 2012;54(2):261.

    CAS  Google Scholar 

  29. [29]

    Rahnamaye Aliabad HA, Basirat S, Ahmad I. Structural, electronical and thermoelectric properties of CdGa2S4 compound under high pressures by mBJ approach. J Mater Sci Mater Electron. 2017;28(21):16476.

    CAS  Google Scholar 

  30. [30]

    Rahnamaye Aliabad HA, Yalcin BG. Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect. J Mater Sci Mater Electron. 2017;28(20):14954.

    CAS  Google Scholar 

  31. [31]

    Abareshi A, Rahnamaye Aliabad HA. Anisotropic thermoelectric properties of Sr5Sn2As6 compound under pressure by PBE-GGA and mBJ approaches. Mater Res Express. 2017;4(9):096303.

    Google Scholar 

  32. [32]

    Hu C, Ni P, Zhan L, Zhao H, He J, Tritt TM, Huang J, Sumpter BG. Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Met. 2018;37(4):316.

    CAS  Google Scholar 

  33. [33]

    Schwarz K, Blaha P, Madsen GKH. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun. 2002;147(1–2):71.

    Google Scholar 

  34. [34]

    Georg K, Madsen H, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006;175(1):67.

    Google Scholar 

  35. [35]

    Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett. 2009;102(22):226401.

    Google Scholar 

  36. [36]

    Rahnamaye Aliabad HA. Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials. Chin Phys B. 2015;24(9):097102.

    Google Scholar 

  37. [37]

    Zevalkink A, Pomrehn GS, Johnson S, Swallow J, Gibbs ZM, Snyder GJ. Influence of the triel elements (M = Al, Ga, In) on the transport properties of Ca5M2Sb6 Zintl compounds. Chem Mater. 2012;24(11):2091.

    CAS  Google Scholar 

  38. [38]

    Rahnamaye Aliabad HA, Kheirabadi M. Thermoelectricity and superconductivity in pure and doped Bi2Te3 with Se. Physica B. 2014;433(1):157.

    CAS  Google Scholar 

  39. [39]

    Rahnamaye Aliabad HA, Ghazanfari M, Ahmad I, Saeed MA. Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput Mater Sci. 2012;65:509.

    CAS  Google Scholar 

  40. [40]

    Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA. 1944;30(9):244.

    CAS  Google Scholar 

  41. [41]

    Schmitt J, Gibbs ZM, Snyder GJ, Felserd C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater Horiz. 2015;2(1):68.

    CAS  Google Scholar 

  42. [42]

    Zhou T, Zhang C, Zhang H, Xiu F, Yang Z. Enhanced thermoelectric properties of the Dirac semimetal Cd3As2. Inorg Chem Front. 2016;3(12):1637.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Blaha and Prof. Madsen of Vienna University of Technology, Austria, for their help in using of Wien2k and BoltzTrap packages.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Asghar Rahnamaye Aliabad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahnamaye Aliabad, H.A., Nodehi, Z., Maleki, B. et al. Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Met. 38, 1015–1023 (2019). https://doi.org/10.1007/s12598-019-01235-0

Download citation

Keywords

  • Electronic and thermoelectric properties
  • ZrNiPb
  • Bulk and nanosheet structures
  • The pressure effects