Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution


Two-dimensional Sn2Ta2O7 nanosheets with a thickness of ~ 10 nm were successfully prepared through a novel tantalic acid-based solid-state reaction method at reduced temperature. The as-obtained samples were characterized by powder X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) diffuse reflectance spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. The photocatalytic performance of Sn2Ta2O7 nanosheets was evaluated by photocatalytic water splitting for hydrogen evolution under visible light irradiation (λ ≥ 400 nm). The Sn2Ta2O7 nanosheets with a large surface area of 25.9 m2·g−1 showed higher H2 production activity, which was about 4.4 times higher than that of bulk Sn2Ta2O7 in lactic acid aqueous solutions using Pt as a co-catalyst. The improved photocatalytic performance mainly benefited from the nanosheet structure, which provided abundant surface active sites and facilitated the photogenerated charge carrier separation efficiently. This work may open up new opportunity to develop novel nanostructured tantalum-based semiconductors with improved catalytic performance for solar energy conversion.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. [1]

    Wu JJ, Zhou C, Zhao YF, Shang L, Bian T, Shao L, Shi F, Wu LZ, Tung CH, Zhang TR. One-pot hydrothermal synthesis and photocatalytic hydrogen evolution of pyrochlore type K2Nb2O6. Chin J Chem. 2014;32(6):485.

    Article  Google Scholar 

  2. [2]

    Chen YZ, Li WH, Li L, Wang LM. Progress in organic photocatalysts. Rare Met. 2018;37(1):1.

    Article  Google Scholar 

  3. [3]

    Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116(12):7159.

    Article  Google Scholar 

  4. [4]

    Zhang Y, Yu JQ, Yu DS, Zhou XC, Lu W. Enhancement in the photocatalytic and photoelectrochemical properties of visible-light driven BiVO4 photocatalyst. Rare Met. 2011;30(1):192.

    Article  Google Scholar 

  5. [5]

    Mukherji A, Seger B, Lu GQ, Wang LZ. Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano. 2011;5(5):3483.

    Article  Google Scholar 

  6. [6]

    Jia TT, Kolpin A, Ma CS, Chan RC, Kwok WM, Tsang SC. A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem Commun. 2014;50(10):1185.

    Article  Google Scholar 

  7. [7]

    Zhang JY, Wang YH, Zhang J, Lin Z, Huang F, Yu JG. Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS Appl Mater Interfaces. 2013;5(3):1031.

    Article  Google Scholar 

  8. [8]

    Bhunia MK, Yamauchi K, Takanabe K. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed. 2014;53(41):11001.

    Article  Google Scholar 

  9. [9]

    Zhou C, Shi R, Shang L, Wu LZ, Tung CH, Zhang TR. Two-step hydrothermal synthesis of Sn2Nb2O7 nanocrystals with enhanced visible-light-driven H2 evolution activity. Chin J Catal. 2018;39(3):395.

    Article  Google Scholar 

  10. [10]

    Fu CF, Luo QQ, Li XX, Yang JL. Two-dimensional van der Waals nanocomposites as Z-scheme type photocatalysts for hydrogen production from overall water splitting. J Mater Chem A. 2016;4(48):18892.

    Article  Google Scholar 

  11. [11]

    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.

    Article  Google Scholar 

  12. [12]

    Kaowphong S, Chumha N, Nimmanpipug P, Kittiwachana S. Nanosized GdVO4 powders synthesized by sol–gel method using different carboxylic acids. Rare Met. 2018;37(7):561.

    Article  Google Scholar 

  13. [13]

    Ren GX, Yu B, Liu YM, Wang HX, Zhang WG, Liang W. High photocatalytic activity of Cu2O/TiO2/Pt composite films prepared by magnetron sputtering. Rare Met. 2017;36(10):821.

    Article  Google Scholar 

  14. [14]

    Liu QQ, Shen JY, Yang XF, Zhang TR, Tang H. 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Appl Catal B. 2018;232:562.

    Article  Google Scholar 

  15. [15]

    Wang GL, Shan LW, Wu Z, Dong LM. Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–gel method. Rare Met. 2017;36(2):129.

    Article  Google Scholar 

  16. [16]

    Xu H, Liu SQ, Zhou S, Yuan TZJ, Wang X, Tang X, Yin J, Tao HJ. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values. Rare Met. 2018;37(9):750.

    Article  Google Scholar 

  17. [17]

    Li LD, Yan JQ, Wang T, Zhao ZJ, Zhang J, Gong JL, Guan NJ. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun. 2015;6:5881.

    Article  Google Scholar 

  18. [18]

    Zhang YL, Yang J, Yu XJ. Preparation, characterization, and adsorption-photocatalytic activity of nano TiO2 embedded in diatomite synthesis materials. Rare Met. 2017;36(12):987.

    Article  Google Scholar 

  19. [19]

    Zhou C, Shi R, Shang L, Wu LZ, Tung CH, Zhang TR. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res. 2018;11(6):3462.

    Article  Google Scholar 

  20. [20]

    Shen J, Meng YL, Xin G. CdS/TiO2 nanotubes hybrid as visible light driven photocatalyst for water splitting. Rare Met. 2011;30(1):280.

    Article  Google Scholar 

  21. [21]

    Zhou C, Shi R, Shang L, Zhao YF, Waterhouse GIN, Wu LZ, Tung CH, Zhang TR. A sustainable strategy for the synthesis of pyrochlore H4Nb2O7 hollow microspheres as photocatalysts for overall water splitting. ChemPlusChem. 2016;82(2):181.

    Article  Google Scholar 

  22. [22]

    Zhou C, Zhao YF, Shang L, Cao YH, Wu LZ, Tung CH, Zhang TR. Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity. Chem Commun. 2014;50(67):9554.

    Article  Google Scholar 

  23. [23]

    Zhou C, Zhao YF, Bian T, Shang L, Yu HJ, Wu LZ, Tung CH, Zhang TR. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem Commun. 2013;49(84):9872.

    Article  Google Scholar 

  24. [24]

    Yu J, Xu CY, Ma FX, Hu SP, Zhang YW, Zhen L. Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl Mater Interfaces. 2014;6(24):22370.

    Article  Google Scholar 

  25. [25]

    Peng R, Liang LB, Hood ZD, Boulesbaa A, Puretzky A, Ievlev AV, Come J, Ovchinnikova OS, Wang H, Ma C, Chi MF, Sumpter BG, Wu ZL. In-plane heterojunctions enable multiphasic 2D MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction. ACS Catal. 2016;6(10):6723.

    Article  Google Scholar 

  26. [26]

    Low JX, Cao SW, Yu JG, Wageh S. Two-dimensional layered composite photocatalysts. Chem Commun. 2014;50(74):10768.

    Article  Google Scholar 

  27. [27]

    Zhou C, Chen G, Li YX, Zhang HJ, Pei J. Photocatalytic activities of Sr2Ta2O7 nanosheets synthesized by a hydrothermal method. Int J Hydrogen Energy. 2009;34(5):2113.

    Article  Google Scholar 

  28. [28]

    Zhu SY, Liang SJ, Bi JH, Liu MH, Zhou LM, Wu L, Wang XX. Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation. Green Chem. 2016;18(5):1355.

    Article  Google Scholar 

  29. [29]

    Ran JR, Ma TY, Gao GP, Du XW, Qiao SZ. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ Sci. 2015;8(12):3708.

    Article  Google Scholar 

  30. [30]

    Liang QH, Li Z, Huang ZH, Kang FY, Yang QH. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater. 2015;25(44):6885.

    Article  Google Scholar 

  31. [31]

    Li M, Chen Y, Li W, Li X, Tian H, Wei X, Ren ZH, Han G. Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small. 2017;13(16):1604115.

    Article  Google Scholar 

  32. [32]

    Han Q, Wang B, Gao J, Cheng ZH, Zhao Y, Zhang ZP, Qu LT. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano. 2016;10(2):2745.

    Article  Google Scholar 

  33. [33]

    Zhou C, Zhao YF, Shang L, Shi R, Wu LZ, Tung CH, Zhang TR. Facile synthesis of ultrathin SnNb2O6 nanosheets towards improved visible-light photocatalytic H2-production activity. Chem Commun. 2016;52(53):8239.

    Article  Google Scholar 

  34. [34]

    Lang JY, Li CY, Wang SW, Lv JJ, Su YG, Wang XJ, Li GS. Coupled heterojunction Sn2Ta2O7@SnO2: cooperative promotion of effective electron-hole separation and superior visible-light absorption. ACS Appl Mater Interfaces. 2015;7(25):13905.

    Article  Google Scholar 

  35. [35]

    Hosogi Y, Shimodaira Y, Kato H, Kobayashi H, Kudo A. Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and their photocatalytic properties. Chem Mater. 2008;20(4):1299.

    Article  Google Scholar 

  36. [36]

    Stewart DJ, Knop O, Meads RE, Parker WG. Pyrochlores. IX. Partially oxidized Sn2Nb2O7, and Sn2Ta2O7: a mössbauer study of Sn(II, IV) compounds. Can J Chem. 1973;51(7):1041.

    Article  Google Scholar 

  37. [37]

    Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A. Energy structure and photocatalytic activity of niobates and tantalates containing Sn(II) with a 5 s2 electron configuration. Chem Lett. 2004;33(1):28.

    Article  Google Scholar 

  38. [38]

    Szanics J, Kakihana M. A novel tantalic acid-based polymerizable complex route to LiTaO3 using neither alkoxides nor chlorides of tantalum. Chem Mater. 1999;11(10):2760.

    Article  Google Scholar 

  39. [39]

    Ma WG, Han DX, Zhou M, Sun H, Wang LN, Dong XD, Niu L. Ultrathin g-C3N4/TiO2 composites as photoelectrochemical elements for the real-time evaluation of global antioxidant capacity. Chem Sci. 2014;5(10):3946.

    Article  Google Scholar 

  40. [40]

    Pesika NS, Stebe KJ, Searson PC. Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv Mater. 2003;15(15):1289.

    Article  Google Scholar 

  41. [41]

    Bao NZ, Shen LM, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater. 2008;39(20):110.

    Article  Google Scholar 

  42. [42]

    Yu HJ, Shi R, Zhao YX, Bian T, Zhao YF, Zhou C, Waterhouse GIN, Wu LZ, Tung CH, Zhang TR. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater. 2017;29(16):1605148.

    Article  Google Scholar 

  43. [43]

    Mo Z, Xu H, Chen ZG, She XJ, Song YH, Wu J, Yan PC, Xu L, Lei YC, Yuan SQ, Li HM. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl Catal B. 2018;225:154.

    Article  Google Scholar 

  44. [44]

    Zhou C, Shang L, Yu HJ, Bian T, Wu LZ, Tung CH, Zhang TR. Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal Today. 2014;225:158.

    Article  Google Scholar 

Download references


This work was financially supported by the National Key R&D Program of China (Nos. 2017YFA0206904, 2017YFA0206900 and 2016YFB0600901), the National Natural Science Foundation of China (Nos. 51825205, U1662118, 51772305, 51572270, 21871279 and 21802154), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17000000), the Beijing Natural Science Foundation (No. 2182078), the Beijing Municipal Science and Technology Project (No. Z181100005118007), the Royal Society-Newton Advanced Fellowship (No. NA170422), the International Partnership Program of Chinese Academy of Sciences (No. GJHZ1819) and the K. C. Wong Education Foundation.

Author information



Corresponding authors

Correspondence to Qin-Qin Liu or Tie-Rui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, XS., Zhou, C., Shi, R. et al. Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Met. 38, 397–403 (2019).

Download citation


  • Sn2Ta2O7
  • Nanosheets
  • Visible light
  • Photocatalysis
  • Hydrogen evolution