Skip to main content

Temperature-stable dielectric properties from 100 to 375 °C in system (K0.495Na0.495La0.01)(Nb0.997Cu0.0075)O3–Bi(Mg0.5Zr0.5)O3

Abstract

(1−x)(K0.495Na0.495La0.01)(Nb0.997Cu0.0075)O3-xBi(Mg0.5Zr0.5)O3 (abbreviated as KNLNC-xBMZ) ceramics were designed and prepared. The phase transition, microstructure and electrical properties of the ceramics were investigated. The phase structures of the ceramics transform from orthorhombic to pseudocubic phases and the grain sizes decrease gradually with BMZ content (x) increasing. Additionally, BMZ additions can significantly enhance the dielectric temperature stability and decrease the dielectric loss of ceramics over a relatively broad temperature range. KNLNC-0.02BMZ ceramics exhibit high dielectric permittivity (εr = 1542) and small variation (Δεr/εr150 °C ≤ ± 15%) in dielectric permittivity from 100 to 375 °C, and low dielectric loss (tanδ ≤ 2%) in the temperature range of 100–350 °C, which suggests that this ceramic is a candidate for high-temperature capacitor application.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. [1]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M. Lead-free piezoceramics. Nature. 2004;432(4):84.

    CAS  Article  Google Scholar 

  2. [2]

    Zhang BY, Wu JG, Cheng XJ, Wang XP, Xiao DQ, Zhu JG, Lou XJ. Lead-free piezoelectrics based on potassium–sodium niobate with giant d 33. ACS Appl Mater Interfaces. 2013;5(16):7718.

    CAS  Article  Google Scholar 

  3. [3]

    Zheng T, Wu JG, Cheng XJ, Wang XP, Zhang BY, Xiao DQ, Zhu JG, Lou XJ. New potassium–sodium niobate material system: a giant-d 33 and high-T C lead-free piezoelectric. Dalton Trans. 2014;43(30):11759.

    CAS  Article  Google Scholar 

  4. [4]

    Cheng XJ, Wu JG, Lou XJ, Wang XJ, Wan XP. Achieving both giant d 33 and high T C in patassium-sodium niobate ternary system. ACS Appl Mater Interfaces. 2014;6(2):750.

    CAS  Article  Google Scholar 

  5. [5]

    Wu JG, Wang XP, Cheng XJ, Zheng T, Zhang BY, Xiao DQ, Zhu JG, Lou XJ. New potassium–sodium niobate lead-free piezoceramic: giant-d 33 vs. sintering temperature. J Appl Phys. 2014;115(4):114104.

    Google Scholar 

  6. [6]

    Zheng T, Wu JG. Enhanced piezoelectricity over a wide sintering temperature (400–1050 °C) range in potassium sodium niobate-based ceramics by two step sintering. J Mater Chem A. 2015;3(13):6772.

    CAS  Article  Google Scholar 

  7. [7]

    Zheng T, Wu JG, Xiao DQ, Zhu JG. Giant d 33 in nonstoichiometric (K, Na)NbO3-based lead-free ceramics. Scripta Mater. 2015;94:25.

    CAS  Article  Google Scholar 

  8. [8]

    Tao H, Wu JG. Giant piezoelectric effect and high strain response in (1−x)(K0.45Na0.55)(Nb1−ySby)O3xBi0.5Na0.5Zr1−zHfzO3 lead-free ceramics. J Eur Ceram Soc. 2016;36(7):1605.

    CAS  Article  Google Scholar 

  9. [9]

    Xu K, Li J, Lv X, Wu JG, Zhang XX, Xiao DQ, Zhu JG. Superior piezoelectric properties in potassium-podium niobate lead-free ceramics. Adv Mater. 2016;28(38):8519.

    CAS  Article  Google Scholar 

  10. [10]

    Li FL, Kwok KW. Fabrication of transparent electro-optic (K0.5Na0.5)1−xLixNb1−xBixO3 lead-free ceramics. J Eur Ceram Soc. 2013;33(1):123.

    Article  Google Scholar 

  11. [11]

    Zhang XS, Dong Y, Yang ZY, Zhao XM, Chai QZ, Chao XL. Transparency of K0.5Na0.5NbO3–Sr(Mg1/3Nb2/3)O3 lead-free ceramics modulated by relaxor behavior and grain size. Ceram Int. 2016;42(16):17963.

    CAS  Article  Google Scholar 

  12. [12]

    Yang ZY, Zhang XS, Yang D, Yang B, Chao XL, Wei LL, Yang ZP. Excellent transmittance induced phase transition and grain size modulation in lead-free (1−x)(K0.5Na0.5)NbO3xLaBiO3 ceramics. J Am Ceram Soc. 2016;99(1):2055.

    CAS  Article  Google Scholar 

  13. [13]

    Lin C, Wu X, Lin M, Huang YP, Li J. Optical, luminescent and optical temperature sensing properties of (K0.5Na0.5)NbO3–ErBiO3 transparent ceramics. J Alloys Compd. 2017;706:156.

    CAS  Article  Google Scholar 

  14. [14]

    Qu BY, Du HL, Yang ZT. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J Mater Chem C. 2016;4(9):1795.

    CAS  Article  Google Scholar 

  15. [15]

    Yang ZT, Du HL, Qu SB, Hou YD, Ma H, Wang JF, Wang J, Wei XY, Xu Z. Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. J Mater Chem A. 2016;4(36):13778.

    CAS  Article  Google Scholar 

  16. [16]

    Du HL, Zhou WC, Luo F. High T(m) lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3–0.96(K0.5Na0.5)NbO3. J Appl Phys. 2008;104(4):044104.

    Article  Google Scholar 

  17. [17]

    Cheng HL, Du HL, Zhou WC, Zhu DM, Luo F, Xu BX. Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J Am Ceram Soc. 2013;96(3):833.

    CAS  Article  Google Scholar 

  18. [18]

    Chen XL, Chen J, Ma DD, Huang GS, Fang L, Zhou HF. High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3–Bi(Zn0.75W0.25)O3 solid solution. Mater Lett. 2015;145:247.

    CAS  Article  Google Scholar 

  19. [19]

    Chen XL, Ma DD, Huang GS, Chen J, Zhou HF, Fang L. (K0.5Na0.5)NbO3–Bi(Zn0.5Zr0.5)O3 perovskite ceramics: high relative permittivity, low dielectric loss and good thermal stability. Ceram Int. 2015;41(10):13883.

    CAS  Article  Google Scholar 

  20. [20]

    Chen XL, Liu GF, Huang GS, Yan X, Li XX, Zhou HF. Temperature-stable dielectric and piezoelectric properties of (K0.5Na0.5)NbO3–Bi(Cu0.75W0.25)O3 solid solutions. Mater Lett. 2017;199:128.

    CAS  Article  Google Scholar 

  21. [21]

    Du HL, Zhou WC, Luo F, Zhu DM. Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3–(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J Appl Phys. 2009;105(12):124104.

    Article  Google Scholar 

  22. [22]

    Zhang K, Guo Y, Pan D, Duan H, Chen Y, Li H, Liu H. Phase transition and piezoelectric properties of dense (K0.48, Na0.52)0.95Li0.05SbxNb(1−x)O3–0.03Ca0.5(Bi0.5, Na0.5)0.5ZrO3 lead free ceramics. J Alloys Compd. 2016;664:503.

    CAS  Article  Google Scholar 

  23. [23]

    Ren PR, Liu ZC, Wei MY, Liu LJ, Shi J. Temperature-insensitive dielectric and piezoelectric properties in (1−x)K0.5Na0.5Nb0.997Cu0.0075O3xSrZrO3 ceramics. J Am Ceram Soc. 2017;37(5):2091.

    CAS  Article  Google Scholar 

  24. [24]

    Cheng HL, Du HL, Zhou WC, Zhu DM, Luo F. Microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Zn2/3Nb1/3)O3-xmol%CeO2 lead-free ceramics for high temperature capacitor applications. J Mater Sci: Mater Electron. 2015;11(26):9097.

    Google Scholar 

  25. [25]

    Zeb A, Milne SJ. High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J Mater Sci: Mater Electron. 2015;26(7):9243.

    CAS  Google Scholar 

  26. [26]

    Zuo RZ, Fang XS, Ye C. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett. 2007;90(9):092904.

    Article  Google Scholar 

  27. [27]

    Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, Li JF, Rödel J. Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater. 2013;23(33):4079.

    CAS  Article  Google Scholar 

  28. [28]

    Zhang SJ, Xia R, Shrout TR. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl Phys Lett. 2007;91(13):132913.

    Article  Google Scholar 

  29. [29]

    Wu L, Zhang JL, Wang CL, Li JC. Influence of compositional ratio K/Na on physical properties in (KxNa1−x)NbO3 ceramics. J Appl Phys. 2008;103(8):084116.

    Article  Google Scholar 

  30. [30]

    Huang XY, Gao CH, Wei MX, Chen ZG, Cui YZ. Influence of Sb2O3 doping on the properties of KBT-NBT-BT lead-free piezoelectric ceramics. Rare Met. 2011;30(1):72.

    CAS  Article  Google Scholar 

  31. [31]

    Du HL, Zhou WC, Luo F, Zhu DM. New Lead-free relaxor ferroelectrics derived from (K0.5Na0.5)NbO3 for high temperature applications. Ferroelectrics. 2010;401(1):141.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21501007), the Industrial Science and Technology Plan in Shaanxi Province of China (No. 2016GY-226), the Doctoral Scientific Research Starting Foundation of Baoji University of Arts and Sciences (No. ZK15044) and the Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201610721039).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua-Lei Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, HL., Zhao, LF., Xiao, J. et al. Temperature-stable dielectric properties from 100 to 375 °C in system (K0.495Na0.495La0.01)(Nb0.997Cu0.0075)O3–Bi(Mg0.5Zr0.5)O3. Rare Met. 38, 1193–1198 (2019). https://doi.org/10.1007/s12598-018-1165-0

Download citation

Keywords

  • (K0.5Na0.5)NbO3
  • Lead-free
  • Microstructure
  • Dielectric properties
  • Elevated temperature stability