Rare Metals

, Volume 37, Issue 9, pp 795–802 | Cite as

Continuous electropolishing technique for long-length Hastelloy C-276 tape

  • Shan-Peng Hao
  • Yi Wang
  • Hong-Li SuoEmail author
  • Qiang Jia
  • Min Liu
  • Lin Ma


Preparation of the second-generation high-temperature superconducting tape by ion beam-assisted deposition (IBAD) requires a flat metal substrate. In this work, the electrochemical polishing of long-length Hastelloy C-276 alloy was studied, and its process parameters, characterized roughness and other properties were investigated. A 10-meter-long Hastelloy C-276 alloy was prepared by electrochemical polishing. The following optimized processing parameters are obtained: temperature of 45 °C, current density of 0.439 A·cm−2 and polishing time of 60 s. The average roughness value (Ra) of the surface is less than 5 nm (5 μm × 5 μm), which was characterized by atomic force microscopy. This value satisfies the requirements for the further preparation of transition-layer pair by the IBAD technology route.


Hastelloy C-276 alloy Electrochemical polishing Atomic force microscopy Current density 



This study was financially supported by the National Science Foundation of China (Nos. 51571002, 51401003) and the Beijing Municipal Natural Science Foundation (Nos. 2172008, KZ201310005003).


  1. [1]
    Lu J, Abraimov DV, Polyanskii AA, Gavrilin AV, Hilton DK, Markiewicz WD, Weijers HW. Field angular dependence of hysteresis losses of coated conductor for high field magnets. IEEE Trans Appl Supercond. 2013;23(3):8200804.CrossRefGoogle Scholar
  2. [2]
    Kudymow A, Noe M, Schacherer C, Kinder H, Prusseit W. Investigation of YBCO coated conductor for application in resistive superconducting fault current limiters. IEEE Trans Appl Supercond. 2007;17(2):3499.CrossRefGoogle Scholar
  3. [3]
    Yagi M, Mukoyama S, Amemiya N, Ishiyama A, Wang X, Aoki Y, Saito T, Ohkuma T, Maruyama O. Progress of 275 kV–3 kA YBCO HTS cable. Physica C. 2011;471(21):1274.CrossRefGoogle Scholar
  4. [4]
    Wang P, Tian H, Suo HL, Ren C, Liang YR, Ma L, Liu M. Cube texture evolution of Ni5W alloy substrates and La–Zr–O buffer layer of YBCO-coated conductors. Rare Met. 2016. Scholar
  5. [5]
    Tian H, Suo HL, Wulff AC, Grivel JC, Mishin OV, Jensen DJ. Comparative characterization of CuNi substrates for coated conductors. Alloys Compd. 2014;601(601):9.CrossRefGoogle Scholar
  6. [6]
    Kim KT, Lim JH, Kim JH, Joo J, Nah W, Ki BJ, Jun BH, Kim CJ, Hong GW. Development of cube-textured Ni–W alloy substrates for YBCO-coated conductor. Physica C. 2004;412–414(9):859.CrossRefGoogle Scholar
  7. [7]
    Liu M, Meng Y, Zhao Y, Li FH, Gong YL, Feng L. Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel. Surf Coat Technol. 2016;286:285.CrossRefGoogle Scholar
  8. [8]
    Celentano G, Varesi E, Petrisor T, Boffa V. Influence of the substrate microstructure on the superconducting properties of YBCO coated conductors. IEEE Trans Appl Supercond. 2003;13:2591.CrossRefGoogle Scholar
  9. [9]
    Teranishi R, Izumi T, Shiohara Y. Highlights of coated conductor development in Japan. Supercond Sci Technol. 2006;19(3):S4.CrossRefGoogle Scholar
  10. [10]
    Foltyn SR, Arendt PN, Dowden PC, Depaula RF, Groves JR, Coulter JY, Jia Q, Maley MP, Peterson DE. High T c coated conductor-performance of meter—long YBCO/IBAD flexible tapes. IEEE Trans Appl Supercond. 1999;9(2):1519.CrossRefGoogle Scholar
  11. [11]
    Goyal A, Ren SX, Specht ED, Kroeger DM, Feenstra R, Norton D, Paranthaman M, Lee DF, Christen DKM. Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates. Micron. 1999;30(5):463.CrossRefGoogle Scholar
  12. [12]
    Groves JR, Arendt PN, Foltyn SR, Jia QX. Improvement of IBAD MgO template layers on metallic substrates for YBCO HTS deposition. IEEE Trans Appl Supercond. 2003;13(2):2651.CrossRefGoogle Scholar
  13. [13]
    Kaneko N, Iijima Y, Hanyu S, Sutoh Y, Kakimoto K, Saitoh T. Effect of substrate roughness on IBAD–GZO template layer. Physica C (Amst, Neth). 2006;445–448445:608.CrossRefGoogle Scholar
  14. [14]
    Kakimoto K, Sutoh Y, Ajimura S, Saitoh T, Iijima Y. Development of long Y-123 coated conductors by ion-beam-assisted-deposition and the pulsed-laser-deposition method. Supercond Sci Technol. 2004;17(5):S264.CrossRefGoogle Scholar
  15. [15]
    Paranthaman MP, Aytug T, Stan L, Jia Q, Cantoni C, Wee SH. Chemical solution derived planarization layers for highly aligned IBAD–MgO templates. Supercond Sci Technol. 2014;27(27):1106.Google Scholar
  16. [16]
    Uprety KK, Ma B, Koritala RE, Fisher BL, Dorris SE, Balachandran U. Growth and properties of YBCO-coated conductors on biaxially textured MgO films prepared by inclined substrate deposition. Supercond Sci Technol. 2005;18(3):294.CrossRefGoogle Scholar
  17. [17]
    Sarma VS, Boer BD, Reger N, Eickemeyer J, Opitz R, Holzapfel B. Ni and Ni-alloy tapes with a very strong cube texture as substrates for high temperature superconducting tapes. Mater Sci Forum. 2002;408–412(11):1561.CrossRefGoogle Scholar
  18. [18]
    Prusseit W, Nemetschek R, Hoffmann C, Sigl G, Lümkemann A, Kinder H. ISD process development for coated conductors. Physica C. 2005;426–431:866.CrossRefGoogle Scholar
  19. [19]
    Chu JY, Zhao Y, Liu L, Wu W, Zhang Z, Hong Z, Li YJ, Jin ZJ. Topography evolution of rough-surface metallic substrates by solution deposition planarization method. Appl Surf Sci. 2018;427:237.CrossRefGoogle Scholar
  20. [20]
    Sheehan C, Jung Y, Holesinger T, Feldmann DM, Edney C, Ihlefeld JF. Solution deposition planarization of long-length flexible substrates. Appl Phys Lett. 2011;98(7):169.CrossRefGoogle Scholar
  21. [21]
    Fenga F, Shia K, Xiaoa SZ, Zhang YY, Zhao ZJ, Wang Z, Wei JJ, Han Z. Fractal analysis and atomic force microscopy measurements of surface roughness for Hastelloy C276 substrates and amorphous alumina buffer layers in coated conductors. Appl Surf Sci. 2012;258(8):3502.CrossRefGoogle Scholar
  22. [22]
    Wang QY, Bai SL, Zhao YH, Liu ZD. Effect of mechanical polishing on corrosion behavior of Hastelloy C22 coating prepared by high power diode laser cladding. Appl Surf Sci. 2014;303(6):312.CrossRefGoogle Scholar
  23. [23]
    Hu YN, Zhou H, Liao LP, Deng HB. Surface quality analysis of the electropolishing of cemented carbide. J Mater Process Technol. 2013;139(1):253.Google Scholar
  24. [24]
    Gaitzsch U, Jens H, Hühne R, Rodig C, Freudenberger J, Holzapfel B, Schultz L. High alloyed NiW substrates for low AC loss applications. Supercond Sci Technol. 2013;26(8):625.CrossRefGoogle Scholar
  25. [25]
    Paranthaman MP, Aytug T, Stan L, Jia Q, Cantoni C, Wee SH. Chemical solution derived planarization layers for highly aligned IBAD–MgO templates. Supercond Sci Technol. 2014;27(2):022002.CrossRefGoogle Scholar
  26. [26]
    Kreiskott S, Arendt PN, Bronisz LE, Foltyn SR, Matias V. Continuous electropolishing of Hastelloy substrates for ion-beam assisted deposition of MgO. Supercond Sci Technol. 2003;16(5):613.CrossRefGoogle Scholar
  27. [27]
    Selvamanickam V, Chen Y, Xiong X, Xie Y, Zhang X, Rar A, Martchevskii M, Schmidt R, Lenseth K, Herrin J. Progress in second—generation HTS wire development and manufacturing. IEEE Trans Appl Supercond. 2009;19(3):3224.CrossRefGoogle Scholar
  28. [28]
    Qu F, Liu HZ, Yang J, Gu HW. Electrochemical polishing of cubic texture Ni substrates for coated conductors. Chin J Rare Met. 2006;30(4):545.Google Scholar
  29. [29]
    Jia Q, Wang Y, Suo HL, Li MY. Electropolishing technique of Hastelloy C-276 alloy. Rare Met. 2017;36(8):635.CrossRefGoogle Scholar
  30. [30]
    Wang Y, Wang P, Suo HL, Jia Q, Lu DQ, Li HZ, Wu HM. Electropolishing of Hastelloy C-276 alloy. Mater Rev. 2017;31(2):37.CrossRefGoogle Scholar
  31. [31]
    Wang X, Li CS, Yu ZM, Zheng HL, Ji YB, Fan ZG. Electropolishing process research of NiW alloy substrates. Rare Met Mater Eng. 2012;41(6):1075.CrossRefGoogle Scholar
  32. [32]
    Feng F, Liu R, Chen H, Shi K, Wang Z, Wu W, Han Z. Substrate surface treatment and YSZ buffer layers by IBAD method for coated conductors. Physica C. 2009;469(15–20):1367.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations