Skip to main content
Log in

Evolution of In783 alloy in microstructure and properties enduring different service times

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Impact, tensile, and fatigue tests were performed in In783 alloy serving 4000, 23,000 and 48,000 h. The microstructure was then analysed by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to probe the relationship between microstructure and properties. The results show that a new Ni5Al3 phase is found, which grows gradually in β phase with serving time increasing, destroying the martensitic structure of the β phase, and degenerating the toughness of the β phase (approximately 13.88% reduction). Therefore, the degradation of the β phase results in a sharp dropping of the resistance to stress accelerated grain boundary oxygen (SAGBO) during serving; thus, the intergranular fracture morphology degree increases with duration of service (almost 40% increase from the fractured surface). In addition, the strength of alloy will be gradually enhanced when the \( \upgamma^{\prime} \) phase becomes relatively bulky with serving time increasing due to considerable distortion of the dislocations as a result of the spacing of individual particles, in which any movement of the dislocation will have to overcome a larger number of obstacles per unit length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tundermann J. Development of In783 alloy, a low thermal expansion, crack growth resistant superalloy. Acta Metall Sin. 1996;9(6):503.

    CAS  Google Scholar 

  2. Nagesha A, Goyal S, Valsan M, Roa KBS, Mannan SK. Low cycle fatigue behaviour of Inconel® alloy 783. Trans Indian Inst Metals. 2010;63(2–3):575.

    Article  CAS  Google Scholar 

  3. Ma L, Chang K-M, Mannan SK. Oxide-induced crack closure: an explanation for abnormal time-dependent fatigue crack propagation behavior in INCONEL alloy 783. Scr Mater. 2003;48(5):583.

    Article  CAS  Google Scholar 

  4. Heck KA, Smith JS. INCONEL alloy 783: an oxidation-resistant, low expansion superalloy for gas turbine applications. J Eng Gas Turbines Power. 1998;120(2):128.

    Article  Google Scholar 

  5. Ma LZ, Chang KM, Mannan SK, Patel SJ. Effect of thermomechanical processing on fatigue crack. Ohio Superalloys. 2000;2000:601.

    Google Scholar 

  6. Ma L. Comparison of different sample preparation techniques in TEM observation of microstructure of INCONEL alloy 783 subjected to prolonged isothermal exposure. Micron. 2004;35(4):273.

    Article  CAS  Google Scholar 

  7. Ma L, Chang K-M, Mannan SK, Patel SJ. Effects of NiAl-β precipitates on fatigue crack propagation of INCONEL alloy 783 under time-dependent condition with various load ratios. Scr Mater. 2003;48(5):551.

    Article  CAS  Google Scholar 

  8. Mannan SK, Smith GD, Patel SJ. Thermal stability of Inconel alloy 783 at 593 °C and 704 °C. Ohio Superalloys. 2004;2004:627.

    Article  Google Scholar 

  9. Mannan S. Long term thermal stability of INCONEL alloy 783. In: Stockholm, Sweden: ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition; 1998. 1.

  10. Han GW, Zhang YY. Variations in microstructure and properties of GH783 alloy after long term thermal exposure. Mater Sci Eng A. 2006;441(1–2):253.

    Article  Google Scholar 

  11. Lyons JS, Reynolds AP, Clawson JD. Effect of aluminide particle distribution on the high temperature crack growth characteristics of a Co–Ni–Fe superalloy. Scr Mater. 1997;37(7):1059.

    Article  CAS  Google Scholar 

  12. Nagesha A, Goyal S, Nandagopal M, Parameswaran P, Sandhya R, Mathew MD, et al. Dynamic strain ageing in Inconel® alloy 783 under tension and low cycle fatigue. Mater Sci Eng A. 2012;546(1):34.

    Article  CAS  Google Scholar 

  13. Kang B, Liu X, Cisloiu C, Chang K-M. High temperature moire´ interferometry investigation of creep crack growth of inconel 783 environment and b-phase effects. Mater Sci Eng A. 2003;347(1):205.

    Article  Google Scholar 

  14. Chandravathi KS, Sasmal CS, Laha K, Parameswaran P, Nandagopal M, Vijayanand VD, et al. Effect of isothermal heat treatment on microstructure and mechanical properties of reduced activation ferritic martensitic steel. J Nucl Mater. 2013;435(1–3):128.

    Article  CAS  Google Scholar 

  15. Kim Y, Song Y-B, Lee SH. Microstructure and intermediate-temperature mechanical properties of powder metallurgy Ti–6Al–4V alloy prepared by the prealloyed approach. J Alloy Compd. 2015;637(1):234.

    Article  CAS  Google Scholar 

  16. Tao J, Liangbin C, Feng J, Heping C, Jun S. Microstructural evolution and mechanical properties of a nickel-based superalloy through long-term service. Mater Sci Eng A. 2016;656(1):184.

    Google Scholar 

  17. Ghosh KS, Mondal DK. Mechanical and electrochemical behavior of a high strength low alloy steel of different grain sizes. Metall Mater Trans A. 2013;44(8):3608.

    Article  CAS  Google Scholar 

  18. Ma L, Chang K-M. Effects of different metallurgical processing on microstructures and mechanical properties of Inconel alloy 783. J Mater Eng Perform. 2004;13(1):32.

    Article  CAS  Google Scholar 

  19. Yu LX, Sun XF, Sun WR, Guo SR, Hu ZQ. Precipitation behaviour of β and γ′ in high Al low thermal expansion superalloy. Mater Sci Technol. 2014;27(1):421.

    Article  Google Scholar 

  20. Zhigang W, Yating Z, Wei X, Guosheng C. Effect of intergranular β phase on the rupture plasticity of the low expansion Inconel 783 superalloy. Baosteel Tech Res. 2011;5(4):16.

    Google Scholar 

  21. Li CF, Ren YP, Qin GW. Experimental confirmation of Ni5Al3 phase in Ni–Al binary system by diffusion couple technique. Adv Mater Res. 2011;299–300:224.

    Google Scholar 

  22. Schtyvers D, Ma Y. In situ TEM study of the N&Al3 to B2 + L12 decomposition in Ni65A135. Mater Lett. 1995;23(1):105.

    Article  Google Scholar 

  23. Robertson M, Wayman CM. Ni5AI3 and the nickel–aluminum binary phase diagram. Metallography. 1984;17(1):43.

    Article  CAS  Google Scholar 

  24. Khadkikar PS, Vedula K. An investigation of the Ni5Al3 phase. J Mater Res. 2011;2(02):163.

    Article  Google Scholar 

  25. Yu LX, Sun YR, Sun WR, Sun XF, Guo SR, Hu ZQ. The influence of phosphorus on the microstructure and stress-rupture properties in a low thermal expansion superalloy. Mater Sci Eng A. 2010;527(4–5):911.

    Article  Google Scholar 

  26. Cheng T. Ni5Al3 phase in heat cycled nickel-rich NiAl. J Mater Sci Lett. 1996;15(4):285.

    Article  CAS  Google Scholar 

  27. Qi HY, Yang JS, Yang XG, Li SL. Low-cycle fatigue behavior of a directionally solidified Ni-based superalloy subjected to gas hot corrosion pre-exposure. Rare Met. 2017. https://doi.org/10.1007/s12598-016-0862-9.

    Article  Google Scholar 

  28. Cao JD, Zhang JS, Hua YQ, Rong Z, Chen RF, Ye YX. High temperature oxidation behavior of Ni-based superalloy GH586 in air. Rare Metals. 2017;36(11):878.

    Article  CAS  Google Scholar 

  29. Ma L, Chang K-M. Identification of SAGBO-induced damage zone ahead of crack tip to characterize sustained loading crack growth in alloy 783. Scr Mater. 2003;48(9):1271.

    Article  CAS  Google Scholar 

  30. Kim T, Yu W. Prognostic value of preoperative serum alpha-fetoprotein level in resectable gastric cancer. J Korean Gastric Cancer Assoc. 2003;3(1):33.

    Article  Google Scholar 

  31. Gladman T. Precipitation hardening in metals. Mater Sci Technol. 2013;15(1):30.

    Article  Google Scholar 

  32. Jiang R, Gao N, Reed PAS. Influence of orientation-dependent grain boundary oxidation on fatigue cracking behaviour in an advanced Ni-based superalloy. J Mater Sci. 2015;50(12):4379.

    Article  CAS  Google Scholar 

  33. Yue XD, Li JR, Wang XG. The microstructure of a single crystal superalloy after different aging heat treatments. Rare Metals. 2018;37(3):210.

    Article  CAS  Google Scholar 

  34. Sadananda K, Vasudevan A. Analysis of high temperature fatigue crack growth behavior. Int J Fatigue. 1997;19(93):183.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2016YFC081902) and the Shenhua Guohua (Beijing) Electric Power Research Institute Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, ZS., Du, JF., Liang, J. et al. Evolution of In783 alloy in microstructure and properties enduring different service times. Rare Met. 43, 334–341 (2024). https://doi.org/10.1007/s12598-018-1099-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1099-6

Keywords

Navigation