Rare Metals

, Volume 37, Issue 5, pp 439–446 | Cite as

Synthesis and luminescence properties of Mn3+, Bi3+ co-doped Y6WO12 for blue phosphor

  • Jun-Hua You
  • Ren-Chao Wang
  • Fei Han
  • Rui Guo
  • Xuan-Wen Liu


Mn3+ and Bi3+ co-doped Y6WO12 samples with hexagonal structure were synthesized via an improved salt pyrogenation method at a temperature region of 700–1100 °C for 3 h. In Y6WO12, Mn3+, substituting Y3+, occupies a seven-coordination site and its energy levels are treated in near Oh symmetry. The samples doped by Mn3+ alone emit the most intensive blue light at 420 nm under excitation at 247 nm due to charge transition (CT). The mechanism of sensitization of Bi3+ for Y6WO12:Mn3+ was also analyzed by taking account of metal-to-metal charge-transfer (MMCT) from Bi3+ to Mn3+. As a consequence, the phosphor Y6WO12:Mn3+/Bi3+ can emit blue light under radiation of 370 nm, and the emission intensity is enhanced about five times by the sensitizer Bi3+. The optimal doping concentration of Bi3+ is determined as 1 at% for the emission at 420 nm in Y6WO12:0.5 at% Mn3+ phosphors.


Mn3+ Bi3+ Y6WO12 Blue phosphor Salt pyrogenation method 



This work was financially supported by the National Natural Science Foundation of China (Nos. 51401130 and 51704064), the Program for Liaoning Innovative Research Team in University (No. LT2015020), Hebei Province Higher Education Science and Technology Research Project (No. ZD2017309), the Scientific and Technological Research and Development Plan of Qinhuangdao City (No. 201701B063) and Northeastern University at Qinhuangdao Campus Research Fund (No. XNK201602).


  1. [1]
    Carlier T, Chambrier MH, Ferri A, Estrade S, Blach JF, Martin G, Meziane B, Peiro F, Roussel P, Ponchel F, Remiens D, Cornet A, Desfeux R. Lead-free alpha-La2WO6 ferroelectric thin films. ACS Appl Mater Interfaces. 2015;7(44):24409.CrossRefGoogle Scholar
  2. [2]
    Apostolov ZD, Sarin P, Hughes RW, Kriven WM. Thermal expansion of Ln(6)WO(12) (Ln = Y, Ho, Er, Yb) and Ln(2)WO(6) (Ln = Gd, Dy, Ho)—an in situ synchrotron X-ray diffraction study. J Am Ceram Soc. 2014;97(8):2496.CrossRefGoogle Scholar
  3. [3]
    Sun LN, Meng QY, Feng XH, Zuo L, Yu CH, Ma L. Synthesis and luminescence properties of Y10W2O21: Eu nanophosphor. Spectrosc Spect Anal. 2011;31(12):3218.Google Scholar
  4. [4]
    Llanos J, Olivares D, Manriquez V, Espinoza D, Brito I. Synthesis and luminescent properties of two different Y2WO6: Eu3+ phosphor phases. J Alloys Compd. 2015;628:352.CrossRefGoogle Scholar
  5. [5]
    Quarez E, Kravchyk KV, Joubert O. Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ion. 2012;216:19.CrossRefGoogle Scholar
  6. [6]
    Yoshimura M, Ma JF, Kakihana M. Low-temperature synthesis of cubic and rhombohedral Y6WO12 by a polymerized complex method. J Am Ceram Soc. 1998;81(10):2721.CrossRefGoogle Scholar
  7. [7]
    You JH, Ma L, Qu YD, Li RD, Liu XW, Guo R. UC/DC luminescence of Ho3+ doped pyrochlore structured La2(1-x)Yb2xTiO5 phosphor synthesized by sol-gel method. J Rare Earths. 2016;34(3):235.CrossRefGoogle Scholar
  8. [8]
    Liu XW, Qi JQ, Guo R, Liu FC, Liu G, Zhang XL, Zhang Y. Synthesis and up/down conversion luminescence properties of Er3+/Yb3+ Co-doped La2TiO5 phosphor. Chin J Inorg Chem. 2016;32(1):49.Google Scholar
  9. [9]
    Ma ZX, Zhang QT, Liu JL, Yan CH, Ohno T, Zhang M. Preparation of luminescent polystyrene microspheres via surface-modified route with rare earth (Eu3+ and Tb3+) complexes linked to 2,2’-bipyridine. Rare Met. 2015;34(8):590.CrossRefGoogle Scholar
  10. [10]
    Liu XW, Guo R, Liu H, Yu YQ, Qi XW, Xu JY, Xie CZ. Two series of novel 3D potentially porous heterometallic Cu–Ln coordination frameworks assembled by 3,4-pyridinedicarboxylic acid with different topologies and channels: syntheses, structures, luminescence and magnetic properties. RSC Adv. 2015;5(20):15059.CrossRefGoogle Scholar
  11. [11]
    Garcia-Lastra JM, Garcia-Fernandez P, Barriuso MT, Aramburu JA, Moreno M. Sharp lines due to Cr3+ and Mn2+ Impurities in Insulators: going beyond the usual tanabe-sugano approach. Phys Chem A. 2014;118(12):2377.CrossRefGoogle Scholar
  12. [12]
    Xin XD, Wei HW, Zhao WH, Liu ZS, Li WX, Jiao H, Jing XP. Doping and replacing effects on the luminescent properties of SrAl12O19:Mn4+ red phpsphor. Chin J Inorg Chem. 2016;32(7):1199.Google Scholar
  13. [13]
    Yang Y, Cong Y, Xiao Y, Fu Y, Xia SQ, Dong B. Luminescent and long-lasting properties of Cd3Al2Ge3O12:Mn2+ phosphor. Chin J Inorg Chem. 2015;31(8):1529.Google Scholar
  14. [14]
    Wang J, Nei WH, Xie PB. Properties and synthesis of morphology-controllable CaAl12O19: Mn4+ by combustion synthesis. Proc Eng. 2012;27:698.CrossRefGoogle Scholar
  15. [15]
    Yang WJ, Luo LY, Chen TM, Wang NS. Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED. Chem Mater. 2005;17(15):3883.CrossRefGoogle Scholar
  16. [16]
    Huang YH, Xia Y, Li Y, Liao S, Long QW, Liang JQ, Cai JJ. Synthesis of a new phosphor (LaPO4:Ce, Li, Mn) and kinetics study for thermal process of its precursor. Adv Powder Technol. 2015;26(3):861.CrossRefGoogle Scholar
  17. [17]
    Tai XS, You HY. A new 1D chained coordination polymer: synthesis, crystal structure, antitumor activity and luminescent property. Crystals. 2015;5(4):608.CrossRefGoogle Scholar
  18. [18]
    Wu ZL, Tian B, Xu HJ. Improving color rendering index of Mn-doped ZnO nanorods on silicon-based substrate. Rare Met. 2017;36(9):711.CrossRefGoogle Scholar
  19. [19]
    Takahashi T, Adachi S. Mn(4 +)-activated red photoluminescence in K(2)SiF(6) phosphor. J Electrochem Soc. 2008;155(12):183.CrossRefGoogle Scholar
  20. [20]
    Wang QF, Liu Y, Wang Y, Wang WX, Wan Y, Wang GG, Lu ZG. Considerable photoluminescence enhancement of LiEu(MoO4)(2) red phosphors via Bi and/or Si doping for white LEDs. J Alloys Compd. 2015;625:355.CrossRefGoogle Scholar
  21. [21]
    Han LL, Wang YH, Zhang J, Wang YZ. Enhancement of red emission intensity of Ca9Y(VO4)(7):Eu3+ phosphor via Bi co-doping for the application to white LEDs. Mater Chem Phys. 2013;139(1):87.CrossRefGoogle Scholar
  22. [22]
    Du QQ, Zhou GJ, Zhou HF, Yang ZS. Novel multiband luminescence of Y2Zr2O7:Eu3+, R3+ (R = Ce, Bi) orange-red phosphors via a sol–gel combustion approach. Opt Mater. 2012;35(2):257.CrossRefGoogle Scholar
  23. [23]
    Wu XY, Liang YJ, Chen R, Liu MY, Li YZ. Preparation and photoluminescence properties of Y2O3:Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes. J Mater Sci. 2011;46(16):5581.CrossRefGoogle Scholar
  24. [24]
    Palan CB, Bajaj N, Soni A, Kulkarni M, Omanwar S. Li3PO4: M (M = Tb, Cu) phosphors for radiation dosimetry. Rare Met. 2017;36(9):758.CrossRefGoogle Scholar
  25. [25]
    Zhai YQ, Li RF, Li X, Li JH. Rapid synthesis and properties of color-tunable phosphors SrMoO4:Eu3+ , Tb3+. Rare Met. 2017;36(10):828.CrossRefGoogle Scholar
  26. [26]
    Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257(3):887.CrossRefGoogle Scholar
  27. [27]
    Dupin JC, Gonbeau D, Vinatier P, Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem. 2000;2(6):1319.Google Scholar
  28. [28]
    Boutinaud P. Revisiting the spectroscopy of the Bi3+ ion in oxide compounds. Chin J Inorg Chem. 2013;52(10):6028.CrossRefGoogle Scholar
  29. [29]
    Li Y, Xia Y, Liao S, Long QW, Zhao XY, Dai SS, Lu K. A novel orange emissive phosphor LaPO4:Bi, Sm with sharp and splitting emission peaks of Sm3+. Mater Lett. 2014;123:112.CrossRefGoogle Scholar
  30. [30]
    Xu SH. Luminescence of Solid. Beijing: Tsinghua University Press; 2011. 33.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShenyang University of TechnologyShenyangChina
  2. 2.School of Resources and MaterialsNortheastern University at QinhuangdaoQinhuangdaoChina
  3. 3.Key Laboratory of Nano-Materials and Photoelectric Catalysis of QinhuangdaoQinhuangdaoChina

Personalised recommendations