Rare Metals

, Volume 37, Issue 4, pp 290–299 | Cite as

Enhancing point defect scattering in copper antimony selenides via Sm and S Co-doping

  • Tian-Hua Zou
  • Wen-Jie Xie
  • Marc Widenmeyer
  • Xing-Xing Xiao
  • Xiao-Yin Qin
  • Anke Weidenkaff
Article
  • 37 Downloads

Abstract

Doping- and alloying-induced point defects lead to mass and strain field fluctuations which can be used as effective strategies to decrease the lattice thermal conductivity and consequently boost the performance of thermoelectric materials. Herein, we report the effects of Sm and S co-doping on thermoelectric transport properties of copper antimony selenides in the temperature range of 300 K < T < 650 K. Through the Callaway model, it demonstrates that Sm and S co-doping induces strong mass differences and strain field fluctuations in Cu3SbSe4. The results prove that doping with suitable elements can increase point defect scattering of heat-carrying phonons, leading to a lower thermal conductivity and a better thermoelectric performance. The highest figure of merit (ZT) of ~ 0.55 at 648 K is obtained for the Sm and S co-doped sample with nominal composition of Cu2.995Sm0.005SbSe3.95S0.05, which is about 55% increase compared to the ZT of pristine Cu3SbSe4.

Graphical Abstract

Keywords

Thermoelectric Point defect scattering Cu3SbSe4 Lattice thermal conductivity 

Notes

Acknowledgements

This work was financially supported by the German Research Foundation within the DFG Priority Program SPP 1386 (No. WE 2803/2-2) and Federal Ministry for Economics Affairs and Energy (BMWI) (No. Nr 19U15006F). We also thank Dr. Angelika Veziridis for intensive discussions on the manuscript.

References

  1. [1]
    Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.CrossRefGoogle Scholar
  2. [2]
    Pei YZ, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012;24(46):6125.CrossRefGoogle Scholar
  3. [3]
    Zhu TJ, Fu CG, Xie HH, Liu YT, Zhao XB. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv Energy Mater. 2015;5(19):1500588.CrossRefGoogle Scholar
  4. [4]
    Zhao LD, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2015;351(6269):141.CrossRefGoogle Scholar
  5. [5]
    Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.CrossRefGoogle Scholar
  6. [6]
    Chen G, Dresselhaus M, Dresselhaus G, Fleurial JP, Caillat T. Recent developments in thermoelectric materials. Int Mater Rev. 2003;48(1):45.CrossRefGoogle Scholar
  7. [7]
    Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.CrossRefGoogle Scholar
  8. [8]
    Fu CG, Bai SQ, Liu YT, Tang YS, Chen LD, Zhao XB, Zhu TJ. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun. 2015;6:8144.CrossRefGoogle Scholar
  9. [9]
    Zou T, Qin X, Li D, Sun G, Dou Y, Wang Q, Ren B, Zhang J, Xin H, Li Y. Simultaneous enhancement in thermoelectric power factor and phonon blocking in hierarchical nanostructured β-Zn4Sb3–Cu3SbSe4. Appl Phys Lett. 2014;104(1):013904.CrossRefGoogle Scholar
  10. [10]
    Zou TH, Qin XY, Zhang YS, Li XG, Zeng Z, Li D, Zhang J, Xin HX, Xie WJ, Weidenkaff A. Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Sci Rep. 2015;5:17803.CrossRefGoogle Scholar
  11. [11]
    Zhao WY, Liu ZY, Wei P, Zhang QJ, Zhu WT, Su XL, Tang XF, Yang JH, Liu Y, Shi J. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat Nanotechnol. 2017;12(1):55.CrossRefGoogle Scholar
  12. [12]
    Zhao WY, Liu ZY, Sun ZG, Zhang QJ, Wei P, Mu X, Zhou HY, Li CC, Ma SF, He DQ. Superparamagnetic enhancement of thermoelectric performance. Nature. 2017;549(7671):247.CrossRefGoogle Scholar
  13. [13]
    Xie WJ, He J, Kang HJ, Tang XF, Zhu S, Laver M, Wang SY, Copley JR, Brown CM, Zhang QJ. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 2010;10(9):3283.CrossRefGoogle Scholar
  14. [14]
    Xie WJ, He J, Zhu S, Su XL, Wang SY, Holgate T, Graff JW, Ponnambalam V, Poon SJ, Tang XF. Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf)(Co, Ni) Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 2010;58(14):4705.CrossRefGoogle Scholar
  15. [15]
    Xie WJ, Weidenkaff A, Tang XF, Zhang QJ, Poon J, Tritt TM. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials. 2012;2(4):379.CrossRefGoogle Scholar
  16. [16]
    Hu LP, Zhu TJ, Liu XH, Zhao XB. Point defect engineering of high-performance Bismuth–Telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211.CrossRefGoogle Scholar
  17. [17]
    Jiang GY, He J, Zhu TJ, Fu CG, Liu XH, Hu LP, Zhao XB. High performance Mg2(Si, Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Adv Funct Mater. 2014;24(24):3776.CrossRefGoogle Scholar
  18. [18]
    Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ. Copper ion liquid-like thermoelectrics. Nat Mater. 2012;11(5):422.CrossRefGoogle Scholar
  19. [19]
    He Y, Zhang TS, Shi X, Wei SH, Chen LD. High thermoelectric performance in copper telluride. NPG Asia Mater. 2015;7(8):e210.CrossRefGoogle Scholar
  20. [20]
    Kumar A, Dhama P, Saini DS, Banerji P. Effect of Zn substitution at a Cu site on the transport behavior and thermoelectric properties in Cu3SbSe4. RSC Adv. 2016;6(7):5528.CrossRefGoogle Scholar
  21. [21]
    Zhang D, Yang JY, Jiang QH, Fu LW, Xiao Y, Luo YB, Zhou ZW. Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping. Mater Des. 2016;98:150.CrossRefGoogle Scholar
  22. [22]
    Li XY, Li D, Xin HX, Zhang J, Song CJ, Qin XY. Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J Alloys Compd. 2013;561:105.CrossRefGoogle Scholar
  23. [23]
    Li YY, Qin XY, Li D, Li XY, Liu YF, Zhang J, Song CJ, Xin HX. Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4. RSC Adv. 2015;5(40):31399.CrossRefGoogle Scholar
  24. [24]
    Skoug EJ, Cain JD, Morelli DT. High thermoelectric figure of merit in the Cu3SbSe4–Cu3SbS4 solid solution. Appl Phys Lett. 2011;98(26):261911.CrossRefGoogle Scholar
  25. [25]
    Skoug EJ, Cain JD, Morelli DT, Kirkham M, Majsztrik P, Lara-Curzio E. Lattice thermal conductivity of the Cu3SbSe4–Cu3SbS4 solid solution. J Appl Phys. 2011;110(2):023501.CrossRefGoogle Scholar
  26. [26]
    Wei TR, Li F, Li JF. Enhanced thermoelectric performance of nonstoichiometric compounds Cu3−xSbSe4 by Cu deficiencies. J Electron Mater. 2014;43(6):2229.CrossRefGoogle Scholar
  27. [27]
    Kim HS, Gibbs ZM, Tang YL, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015;3(4):041506.CrossRefGoogle Scholar
  28. [28]
    Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B. 1992;46(10):6131.CrossRefGoogle Scholar
  29. [29]
    Wang SY, She XY, Zheng G, Fu F, Li H, Tang XF. Enhanced thermoelectric performance and thermal stability in β-Zn4Sb3 by slight Pb-doping. J Electron Mater. 2012;41(6):1091.CrossRefGoogle Scholar
  30. [30]
    Zhang YS, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C. First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu–Sb–Se ternary semiconductors. Phys Rev B. 2012;85(5):054306.CrossRefGoogle Scholar
  31. [31]
    Xie HH, Wang H, Pei YZ, Fu CG, Liu XH, Snyder GJ, Zhao XB, Zhu TJ. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv Funct Mater. 2013;23(41):5123.CrossRefGoogle Scholar
  32. [32]
    Yang JH, Meisner GP, Chen LD. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl Phys Lett. 2004;85(7):1140.CrossRefGoogle Scholar
  33. [33]
    Goldsmid H, Penn A. Boundary scattering of phonons in solid solutions. Phys Lett A. 1968;27(8):523.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Materials ScienceUniversity of StuttgartStuttgartGermany
  2. 2.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations