Advertisement

Rare Metals

, Volume 37, Issue 5, pp 427–432 | Cite as

Room-temperature and high-temperature magnetic permeability of Co-doped nanocrystalline alloys

  • Bin Fu
  • Jie Han
  • Sheng-Qi Guo
  • Zhi Wang
  • Pan Zhang
  • Zi-Jiao Pan
  • Qiang Xu
Article
  • 63 Downloads

Abstract

Influence of composition and annealing temperature on structure and magnetic properties of amorphous and nanocrystalline Fe78.4−xCo x Si9B9Nb2.6Cu1 (x = 27.4, 40.0, 51.0, 78.4) alloys was investigated by X-ray diffraction (XRD) and the temperature dependence of permeability. According to the initial crystallization temperature (Tx1) from differential scanning calorimetry (DSC) curves of as-quenched amorphous alloys, 490–700 °C isothermal annealing was carried out to obtain the characteristic nanocrystalline structure. Furthermore, the soft magnetic properties were measured by temperature evolution of magnetic permeability to obtain the correlation between Co content, annealing temperature and magnetic permeability. The results show that, on the one hand, the annealing temperature exerts a significant effect on phase structure and initial permeability (μi). The higher-temperature (from 550 to 610 °C) annealed Co content nanocrystalline samples can remain higher μi at elevated temperature. On the other hand, partial substitution Fe by Co can improve the high-temperature magnetic stability; however, the room-temperature permeability of higher Co content alloys decreases obviously at the same time. This phenomenon was analyzed from the viewpoint of the saturation magnetic induction (Bs), magnetic anisotropy (<K>) and magnetostriction (λs).

Keywords

Nanocrystalline alloys High-temperature soft magnetic properties Initial permeability FeCo-based alloy 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 11604242) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (No. 14JCQNJC04000).

References

  1. [1]
    Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys. 1988;64(10):6044.CrossRefGoogle Scholar
  2. [2]
    Herzer G. Anisotropies in soft magnetic nanocrystalline alloys. J Magn Magn Mater. 2005;294(2):99.CrossRefGoogle Scholar
  3. [3]
    Liu XL, Wang LS, Luo Q, Xu L, Yuan BB, Peng DL. Preparation and high-frequency soft magnetic property of FeCo-based thin films. Rare Met. 2016;35(10):742.CrossRefGoogle Scholar
  4. [4]
    Zhou J, Zhu ZH, Li XM, Du K, Qiao BY, Fu Y. Force-sensitive properties of FeCuNbSiB powder/silicone rubber composite films. Rare Met. 2016;35(10):784.CrossRefGoogle Scholar
  5. [5]
    Shivaee HA, Celegato F, Tiberto P, Castellero A, Baricco M, Madaah Hosseini HR. The effects of thickness on magnetic properties of FeCuNbSiB sputtered thin films. Scientia Iranica F. 2017;24(6):3521.Google Scholar
  6. [6]
    Madugundo R, Geoffroy O, Waeckerle T, Frincu B, Kodjikian S, Rivoirard S. Improved soft magnetic properties in nanocrystalline FeCuNbSiB Nanophy®cores by intense magnetic field annealing. J Mag Mag Mat. 2017;422(15):475.CrossRefGoogle Scholar
  7. [7]
    Fan XD, Zhu FL, Wang QQ, Jiang MF, Shen BL. Effect of magnetic field annealing on microstructure and magnetic properties of FeCuNbSiB nanocrystalline magnetic core with high inductance. Appl Microsc. 2017;47(1):29.CrossRefGoogle Scholar
  8. [8]
    Weltsch Z, Klam K, Lovas A. The comparison of hardness and coercivity evolution in various Fe–B based glasses (including FINEMET precursor) during relaxation and crystallization. Acta Phys Pol A. 2017;131(4):669.CrossRefGoogle Scholar
  9. [9]
    Varga LK, Kovac J. Decomposing the permeability spectra of nanocrystalline finemet core. AIP Adv. 2018;8(4):047205.CrossRefGoogle Scholar
  10. [10]
    Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans Magn. 1989;25(5):3327.CrossRefGoogle Scholar
  11. [11]
    Tho ND, Chau N, Yu SC, Lee HB, Tuan LA, Hoa NQ. Annealing effect on soft magnetic properties and magnetoimpedance of Finemet Fe73.5Si13.5B9Nb3Au1 alloy. J Mag Mag Mater. 2006;304(1):e195.CrossRefGoogle Scholar
  12. [12]
    Suzuki K, Cadogan JM. Role of the residual amorphous phase in the intergranular magnetic coupling in nanocrystalline magnetic alloys. J Mag Mag Mater. 1999;203(1–3):229.CrossRefGoogle Scholar
  13. [13]
    Skorvanek I, Kim C, Kovac J, Svec P, Turtelli R. Soft magnetic behaviour and permeability spectra in amorphous and nanocrystalline Fe80.5Nb7B12.5 alloys. J Mag Mag Mater. 2000;215-216:440.CrossRefGoogle Scholar
  14. [14]
    Blázquez JS, Franco V, Conde CF, Ferenc J, Kulik T, Kiss LF. Correlation between microstructure and temperature dependence of magnetic properties in Fe60Co18(Nb, Zr)6B15Cu1 alloy series. J Appl Phys. 2009;105(9):291.CrossRefGoogle Scholar
  15. [15]
    Knipling KE, Daniil M, Willard MA. Fe-based nanocrystalline soft magnetic alloys for high-temperature applications. Appl Phys Lett. 2009;95(22):222516.CrossRefGoogle Scholar
  16. [16]
    Heil TM, Willard MA. Structure and magnetic properties of Co-rich nanocrystalline soft magnetic alloys with low coercivity. J Appl Phys. 2007;101(9):291.CrossRefGoogle Scholar
  17. [17]
    Willard MA, Claassen JH, Stroud RM, Harris VG. Structure and magnetic properties of (Co, Fe)-based nanocrystalline soft magnetic materials. J Appl Phys. 2002;91(10):8420.CrossRefGoogle Scholar
  18. [18]
    Willard MA. Core-loss analysis of an (Fe Co, Ni)-based nanocrystalline soft magnetic alloy. J Appl Phys. 2005;97(10):10F502.CrossRefGoogle Scholar
  19. [19]
    Gómez-Polo C, Pérez-Landazabal JI, Recarte V, Campo J, Marín P, López M. High-temperature magnetic behavior of FeCo-based nanocrystalline alloys. Phys Rev B. 2002;66:012401.CrossRefGoogle Scholar
  20. [20]
    Ohnuma M, Ping DH, Abe T, Onodera H, Hono K. Optimization of the microstructure and properties of Co-substituted Fe–Si–B–Nb–Cu nanocrystalline soft magnetic alloys. J Appl Phys. 2003;93(11):9186.CrossRefGoogle Scholar
  21. [21]
    Murillo N, González J, Blanco JM, Valenzuela R, González JM, Echeberría J. Creep-induced magnetic anisotropy and magnetostriction in a nanocrystalline Co based alloy. J Appl Phys. 1997;81(8):5683.CrossRefGoogle Scholar
  22. [22]
    Herzer G. Soft magnetic nanocrystalline materials. Scripta Metall Mater. 1995;33(10–11):1741.CrossRefGoogle Scholar
  23. [23]
    Nartia K, Yamasaki J, Fukunage H. Measurement of saturation magnetostriction of a thin amorphous ribbon by means of small-angle magnetization rotation. IEEE Trans Magn. 1980;16(2):435.CrossRefGoogle Scholar
  24. [24]
    Blázquez JS, Franco V, Conde A, Kiss LF. Soft magnetic properties of high-temperature nanocrystalline alloys: permeability and magnetoimpedance. J Appl Phys. 2003;93(4):2172.CrossRefGoogle Scholar
  25. [25]
    Wang Z, He KY, Jin J, Zhang L. Temperature dependence of permeability for Fe–Cu–M–Si–B alloys. Mater Sci Eng A. 2001;304–306:1046.CrossRefGoogle Scholar
  26. [26]
    Han YM, Wang Z, Che XH, Chen XG, Li WR, Li YL. Influence of Co content on the structure and magnetic permeability of nanocrystalline (Fe1-xCox)73.5Cu1Nb3Si13.5B9 alloys. Mater Sci Eng B. 2009;156(1-3):57.CrossRefGoogle Scholar
  27. [27]
    Multigner M, Hernando A, Crespo P, Stiller C, Eckert J, Schultz L. Structural and magnetic properties of mechanically alloyed (FexCu1-x)93Zr7 (x = 0.5, 0.7) solid solutions. J Magn Magn Mater. 1999;196–197:214.CrossRefGoogle Scholar
  28. [28]
    Kakehashi Y, Hosohata O. Curie-temperature “slater-Pauling curve”. Journal de Physique. 1988;49(C-8):C8–73.Google Scholar
  29. [29]
    Wang Z, Yang J, Han YM, Zhang DX, Fu B, Ye RC. Magnetostriction and effective magnetic anisotropy of Co-contained Finemet nanocrystalline alloys. J Appl Phys. 2010;107(9):09A308.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.College of ScienceTianjin University of TechnologyTianjinChina
  3. 3.School of ScienceTianjin UniversityTianjinChina
  4. 4.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations