Advertisement

Rare Metals

, Volume 37, Issue 6, pp 536–542 | Cite as

Flexible ultrathin all-solid-state supercapacitors

  • Rui Wang
  • Qing-Rong Wang
  • Min-Jie Yao
  • Ke-Na Chen
  • Xin-Yu Wang
  • Li-Li Liu
  • Zhi-Qiang Niu
  • Jun Chen
Article
  • 273 Downloads

Abstract

The flexible ultrathin all-solid-state supercapacitors with good electrochemical and mechanical performance were fabricated by the facile methods. The single-wall carbon nanotubes (SWCNTs)–polyaniline (PANI) film electrodes and poly(vinyl alcohol) (PVA)/H3PO4 electrolyte film were prepared by spray-printing and spin-coating strategies, respectively. Thus, the thickness of a supercapacitor is only 8.4 μm. When the mass ratio of SWCNT to PANI is 1:1, the tensile strength and Young’s modulus of the electrode are 10.9 and 655 MPa, respectively. The interior contact resistance of the supercapacitors based on this electrode is only 15–30 Ω. Furthermore, the specific capacitance of this electrode can reach about 355.5 F·g−1, and the supercapacitor based on this electrode maintains 87.2% of its initial specific capacitance over 5000 charging/discharging cycles. Moreover, the supercapacitor shows an excellent electrochemical stability at different bending states. Therefore, the all-solid-state supercapacitors prepared by our strategies would meet the demands of wearable, lightweight, and compact energy storage devices.

Keywords

Supercapacitor Ultrathin Spray printing Carbon nanotube 

Notes

Acknowledgements

This work was financially supported by the Scientific Research Program of Tianjin Municipal Education Commission (No. 2017KJ248).

References

  1. [1]
    Wang XL, Shi GQ. Flexible graphene devices related to energy conversion and storage. Energy Environ Sci. 2015;8(3):790.CrossRefGoogle Scholar
  2. [2]
    Zhu ZQ, Cheng FY, Hu Z, Niu ZQ, Chen J. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J Power Sources. 2015;293:626.CrossRefGoogle Scholar
  3. [3]
    Wang XD, Dong L, Zhang HL, Yu RM, Pan CF, Wang ZL. Recent progress in electronic skin. Adv Sci. 2015;2(10):1500169.CrossRefGoogle Scholar
  4. [4]
    Luo SW, Yao MJ, Lei S, Yan PZ, Wei X, Wang XT, Liu LL, Niu ZQ. Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries. Nanoscale. 2017;9(14):4646.CrossRefGoogle Scholar
  5. [5]
    Li L, Wu Z, Yuan S, Zhang XB. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ Sci. 2014;7(7):2101.CrossRefGoogle Scholar
  6. [6]
    Cao J, Chen C, Zhao Q, Zhang N, Lu QQ, Wang XY, Niu ZQ, Chen J. A flexible nanostructured paper of a reduced graphene oxide–sulfur composite for high-performance lithium–sulfur batteries with unconventional configurations. Adv Mater. 2016;28(43):9629.CrossRefGoogle Scholar
  7. [7]
    Yu DS, Goh KL, Wang H, Wei L, Jiang WC, Zhang Q, Dai LM, Chen Y. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol. 2014;9(7):555.CrossRefGoogle Scholar
  8. [8]
    Shao YL, El-Kady MF, Wang LJ, Zhang QH, Li YG, Wang HZ, Mousavi MF, Kaner RB. Graphene-based materials for flexible supercapacitors. Chem Soc Rev. 2015;44(11):3639.CrossRefGoogle Scholar
  9. [9]
    Zhang H, Cao GP, Yang YS, Gu ZN. Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60 °C. Carbon. 2008;46(1):30.CrossRefGoogle Scholar
  10. [10]
    Wang GP, Zhang L, Zhang JJ. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41(2):797.CrossRefGoogle Scholar
  11. [11]
    Xia H, Hong CY, Shi XQ, Li B, Yuan GL, Yao QF, Xie JP. Hierarchical heterostructures of Ag nanoparticles decorated MnO2 nanowires as promising electrodes for supercapacitors. J Mater Chem A. 2015;3(3):1216.CrossRefGoogle Scholar
  12. [12]
    Li Y, Xu J, Feng T, Yao QF, Xie JP, Xia H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv Funct Mater. 2017;27(14):1606728.CrossRefGoogle Scholar
  13. [13]
    Sun J, Yang SH, Li SS, Cao BQ. Double-activated porous carbons for high-performance supercapacitor electrodes. Rare Met. 2017;36(5):449.CrossRefGoogle Scholar
  14. [14]
    Li B, Zhang GX, Huang KS, Qiao LF, Pang H. One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. Rare Met. 2017;36(5):457.CrossRefGoogle Scholar
  15. [15]
    Guo P, Shen Y, Song Y, Ma J, Lin YH, Nan CW. Self-etching Ni–Co hydroxides@ Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. Rare Met. 2017;36(9):691.CrossRefGoogle Scholar
  16. [16]
    Ranjusha R, Ramakrishna S, Nair AS, Anjali P, Vineeth S, Sonia TS, Sivakumar N, Subramanian KRV, Nair SV, Balakrishnan A. Fabrication and performance evaluation of button cell supercapacitors based on MnO2 nanowire/carbon nanobead electrodes. RSC Adv. 2013;3(38):17492.CrossRefGoogle Scholar
  17. [17]
    Niu ZQ, Zhou WY, Chen J, Feng GX, Li H, Ma WJ, Li JZ, Dong HB, Ren Y, Zhao D, Xie SS. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci. 2011;4(4):1440.CrossRefGoogle Scholar
  18. [18]
    Qin KQ, Kang JL, Li JJ, Shi CS, Li YX, Qiao ZJ, Zhao NQ. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors. ACS Nano. 2015;9(1):481.CrossRefGoogle Scholar
  19. [19]
    Stoller MD, Ruoff RS. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci. 2010;3(9):1294.CrossRefGoogle Scholar
  20. [20]
    Meng FH, Ding Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater. 2011;23(35):4098.CrossRefGoogle Scholar
  21. [21]
    Dillon AC. Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev. 2010;110(11):6856.CrossRefGoogle Scholar
  22. [22]
    Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci. 2011;4(5):1592.CrossRefGoogle Scholar
  23. [23]
    Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF. Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim Acta. 2010;55(12):3904.CrossRefGoogle Scholar
  24. [24]
    Chi K, Zhang ZY, Xi JB, Huang YG, Xiao F, Wang S, Liu YQ. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces. 2014;6(18):16312.CrossRefGoogle Scholar
  25. [25]
    Simotwo SK, DelRe C, Kalra V. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Interfaces. 2016;8(33):21261.CrossRefGoogle Scholar
  26. [26]
    Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828.CrossRefGoogle Scholar
  27. [27]
    Kim BC, Hong JY, Wallace GG, Park HS. Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv Energy Mater. 2015;5(22):1500959.CrossRefGoogle Scholar
  28. [28]
    Wang XY, Lu QQ, Chen C, Han M, Wang QR, Li HX, Niu ZQ, Chen J. A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates. ACS Appl Mater Interfaces. 2017;9(34):28612.CrossRefGoogle Scholar
  29. [29]
    Jiang L, Vangari M, Pryor T, Xiao Z, Korivi NS. Miniature supercapacitors based on nanocomposite thin films. Microelectron Eng. 2013;111:52.CrossRefGoogle Scholar
  30. [30]
    Liu FW, Luo SJ, Liu D, Chen W, Huang Y, Dong L, Wang L. Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Interfaces. 2017;9(39):33791.CrossRefGoogle Scholar
  31. [31]
    Niu ZQ, Liu LL, Zhang L, Zhou WY, Chen XD, Xie SS. Programmable nanocarbon-based architectures for flexible supercapacitors. Adv Energy Mater. 2015;5(23):1500677.CrossRefGoogle Scholar
  32. [32]
    Luan PS, Zhang N, Zhou WY, Niu ZQ, Zhang Q, Cai L, Zhang X, Yang F, Fan QX, Zhou WB, Xiao ZJ, Gu XG, Chen HL, Li KW, Xiao SQ, Wang YC, Liu HQ, Xie SS. Epidermal supercapacitor with high performance. Adv Funct Mater. 2016;26(45):8178.CrossRefGoogle Scholar
  33. [33]
    Huang JX, Kaner RB. A general chemical route to polyaniline nanofibers. J Am Chem Soc. 2004;126(3):851.CrossRefGoogle Scholar
  34. [34]
    Liu LL, Niu ZQ, Zhang L, Zhou WY, Chen XD, Xie SS. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater. 2014;26(28):4855.CrossRefGoogle Scholar
  35. [35]
    Niu ZQ, Ma WJ, Li JZ, Dong HB, Ren Y, Zhao D, Zhou WY, Xie SS. High-strength laminated copper matrix nanocomposites developed from a single-walled carbon nanotube film with continuous reticulate architecture. Adv Funct Mater. 2012;22(24):5209.CrossRefGoogle Scholar
  36. [36]
    Chen C, Cao J, Wang XY, Lu QQ, Han MM, Wang QR, Dai HT, Niu ZQ, Chen J, Xie SS. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy. 2017;42:187.CrossRefGoogle Scholar
  37. [37]
    Niu ZQ, Dong HB, Zhu BW, Li JZ, Hng HH, Zhou WY, Chen XD, Xie SS. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater. 2013;25(7):1058.CrossRefGoogle Scholar
  38. [38]
    Yao Q, Chen LD, Zhang WQ, Liufu SC, Chen XH. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano. 2010;4(4):2445.CrossRefGoogle Scholar
  39. [39]
    Yao Q, Wang Q, Wang LM, Chen LD. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Environ Sci. 2014;7(11):3801.CrossRefGoogle Scholar
  40. [40]
    Zhang ZY, Xiao F, Xiao J, Wang S. Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A. 2015;3(22):11817.CrossRefGoogle Scholar
  41. [41]
    Zhang ZY, Chi K, Xiao F, Wang S. Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A. 2015;3(24):12828.CrossRefGoogle Scholar
  42. [42]
    Meng CZ, Liu CH, Chen LZ, Hu CH, Fan SS. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010;10(10):4025.CrossRefGoogle Scholar
  43. [43]
    Huang C, Grant PS. One-step spray processing of high power all-solid-state supercapacitors. Sci Rep. 2013;3:2393.CrossRefGoogle Scholar
  44. [44]
    Li J, Zhang G, Chen N, Nie X, Ji B, Qu L. Built structure of ordered vertically aligned codoped carbon nanowire arrays for supercapacitors. ACS Appl Mater Interfaces. 2017;9(29):24840.CrossRefGoogle Scholar
  45. [45]
    Chen C, Cao J, Lu QQ, Wang XY, Song L, Niu ZQ, Chen J. Foldable all-solid-state supercapacitors integrated with photodetectors. Adv Funct Mater. 2017;27(3):1604639.CrossRefGoogle Scholar
  46. [46]
    Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10(12):4863.CrossRefGoogle Scholar
  47. [47]
    Lu QQ, Wang XY, Cao J, Chen C, Chen KN, Zhao ZF, Niu ZQ, Chen J. Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium–sulfur batteries. Energy Storage Mater. 2017;8:77.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of ChemistryNankai UniversityTianjinChina

Personalised recommendations