Advertisement

Rare Metals

, Volume 37, Issue 4, pp 360–368 | Cite as

High-temperature formation phases and crystal structure of hot-pressed thermoelectric compounds with chalcopyrite-type structure

  • Atsuko Kosuga
  • Yosuke Fujii
  • Akito Horie
Article
  • 193 Downloads

Abstract

In this study, we introduced the temperature-dependent formation phases and crystallographic parameters of hot-pressed silver gallium telluride AgGaTe2 and copper gallium telluride CuGaTe2 with chalcopyrite structure from 300 to 800 K. These two compounds are potential thermoelectric materials in the intermediate temperature range; however, the temperature-dependent formation phases and crystallographic parameters of hot-pressed samples have not yet been analyzed in detail. The crystal structure analysis based on synchrotron X-ray diffraction (SXRD) measurements clarifies that impurity phases such as Te and Ag2Te in the AgGaTe2 matrix and Te and CuTe in the CuGaTe2 matrix appear at some temperature regions above 300 K. The existence of such impurity phases could be correlated with the increases of the electrical resistivity and Seebeck coefficient of the samples after multiple measurement cycles of the temperature-dependent transport properties from 300 to 800 K. The tetragonal lattice parameters a and c, tetragonal lattice volume, thermal expansion coefficients, tetragonal distortion, anion displacement parameter, and isotropic displacement parameter of the hot-pressed AgGaTe2 and CuGaTe2 were also analyzed. These crystallographic parameters are expected to substantially affect the thermoelectric properties of AgGaTe2 and CuGaTe2. Our results provide prospect of the long-term high-temperature stability and clues of the detailed analysis on the transport properties of hot-pressed AgGaTe2 and CuGaTe2, which should aid their development for thermoelectric applications.

Keywords

Chalcopyrite Silver gallium telluride Copper gallium telluride Thermoelectric Crystal structure 

Notes

Acknowledgements

This work was financially supported by a Grant-in-Aid for Young Scientists (A) (No. 15H05548) of Japan, JST PRESTO of Japan (No. JPMJPR17R4) and the Program to Support Research Activities of Female Researchers in Osaka Prefecture University in Japan. Synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; Proposal Nos. 2014B1334, 2015A1363 and 2015B1377). We thank Prof. S. Yamanaka’s group at Osaka University, Japan for hot pressing AgGaTe2 and CuGaTe2.

References

  1. [1]
    Shay JL, Wernick JH. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications: International Series of Monographs in the Science of the Solid State. Newyork: Pergamon Press; 1975. 1.Google Scholar
  2. [2]
    Shewchun J, Loferski J, Beaulieu R, Chapman G, Garside B. The A1−yIByICIIID2xVIE2(1−x)VI pentenary alloy system and its application to photovoltaic solar energy conversion. J Appl Phys. 1979;50(11):6978.CrossRefGoogle Scholar
  3. [3]
    Jaffe J, Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B. 1984;29(4):1882.CrossRefGoogle Scholar
  4. [4]
    Kuhn B, Kaefer W, Fess K, Friemelt K, Turner Ch, Wendl M, Bucher E. Thermoelectric properties of CuIn1-xGaxTe2 single crystals. Physica (A). 1997;162:661.Google Scholar
  5. [5]
    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder GJ, Harnwunggmoung A, Sugahara T, Ohishi Y. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv Mater. 2012;24(27):3622.CrossRefGoogle Scholar
  6. [6]
    Kosuga A, Plirdpring T, Higashine R, Matsuzawa M, Kurosaki K, Yamanaka S. High-temperature thermoelectric properties of Cu1−xInTe2 with a chalcopyrite structure. Appl Phys Lett. 2012;100(4):042108.CrossRefGoogle Scholar
  7. [7]
    Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H, Yamanaka S. Thermoelectric properties of Ag1−xGaTe2 with chalcopyrite structure. Appl Phys Lett. 2011;99(6):061902.CrossRefGoogle Scholar
  8. [8]
    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem Commun. 2012;48(32):3818.CrossRefGoogle Scholar
  9. [9]
    Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J, Cui J. High thermoelectric performance of solid solutions CuGa1−xInxTe2 (x = 0–1.0). Appl Phys Lett. 2012;100(23):231903.CrossRefGoogle Scholar
  10. [10]
    Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L, Zhang W. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv Mater. 2014;26(23):3848.CrossRefGoogle Scholar
  11. [11]
    Burger A, Ndap JO, Cui Y, Roy U, Morgan S, Chattopadhyay K, Ma X, Faris K, Thibaud S, Miles R. Preparation and thermophysical properties of AgGaTe2 crystals. J Cryst Growth. 2001;225(2):505.CrossRefGoogle Scholar
  12. [12]
    Guittard M, Rivet J, Mazurier A, Jaulmes S, Fourcroy P. Intermediate phases, structural determination and phase-diagram of the system Ag2Te–Ga2Te3. Mater Res Bull. 1988;23(2):217.CrossRefGoogle Scholar
  13. [13]
    Wei SH, Ferreira LG, Zunger A. First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. Phys Rev B. 1992;45(5):2533.CrossRefGoogle Scholar
  14. [14]
    Wu HJ, Dong ZJ. Phase diagram of ternary Cu–Ga–Te system and thermoelectric properties of chalcopyrite CuGaTe2 materials. Acta Mater. 2016;118:331.CrossRefGoogle Scholar
  15. [15]
    Yang J, Chen S, Du Z, Liu X, Cui J. Lattice defects and thermoelectric properties: the case of p-type CuInTe2 chalcopyrite on introduction of zinc. Dalton Trans. 2014;43(40):15228.CrossRefGoogle Scholar
  16. [16]
    Cheng N, Liu R, Bai S, Shi X, Chen L. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. J Appl Phys. 2014;115(16):163705.CrossRefGoogle Scholar
  17. [17]
    Kumagai M, Kurosaki K, Ohishi Y, Muta H, Yamanaka S. Effect of ball-milling conditions on thermoelectric properties of polycrystalline CuGaTe2. Mater Trans. 2014;55(8):1215.CrossRefGoogle Scholar
  18. [18]
    Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007;130:15.CrossRefGoogle Scholar
  19. [19]
    Avon JE, Yoodee K, Woolley JC. Solid solution, lattice parameter values, and effects of electronegativity in the (Cu1−xAx)(Ga1−yIny)(Se1−zTez)2 alloys. J Appl Phys. 1984;55(2):524.CrossRefGoogle Scholar
  20. [20]
    McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Ettlinger L, Hubbard CR. Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1986;1(2):64.CrossRefGoogle Scholar
  21. [21]
    Guittard M, Rivet J, Alapini F, Chilouet A, Loireau-Lozac’h AM. Description du système ternaire Ag–Ga–Te. J Less Common Met. 1991;170(2):373.CrossRefGoogle Scholar
  22. [22]
    Frueh A. The use of Zone theory in problems of sulfide mineralogy. 3, polymorphism of Ag2Te and Ag2S. Am Miner. 1961;46(5–6):654.Google Scholar
  23. [23]
    Yvon K, Bezinge A, Tissot P, Fischer P. Structure and magnetic properties of tetragonal silver (I, III) oxide, AgO. J Solid State Chem. 1986;65(2):225.CrossRefGoogle Scholar
  24. [24]
    Kistaiah P, Venudhar Y, Sathyanarayana Murthy K, Iyengar L, Krishna Rao K. Anomalous thermal expansion of silver gallium telluride. J Appl Crystallogr. 1981;14(5):281.CrossRefGoogle Scholar
  25. [25]
    Masse G, Djessas K, Yarzhou L. Study of CuGa(Se, Te)2 bulk materials and thin films. J Appl Phys. 1993;74(2):1376.CrossRefGoogle Scholar
  26. [26]
    Pashinkin A, Fedorov V. Phase equilibria in the Cu–Te system. Inorg Mater. 2003;39(6):539.CrossRefGoogle Scholar
  27. [27]
    Bodnar I, Orlova N. Lattice thermal expansion in CuGaT2 and CuInTe2 compounds over the temperature range 80 to 650 K from X-ray diffracion data. Cryst Res Technol. 1986;21(8):1091.CrossRefGoogle Scholar
  28. [28]
    Neumann H. Trends in the thermal expansion coefficients of the AIBIIIC2VI and AIIBIVC2V chalcopyrite compounds. Cryst Res Technol. 1980;15(7):849.Google Scholar
  29. [29]
    Pohl J, Albe K. Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory. Phys Rev B. 2013;87(24):245203.CrossRefGoogle Scholar
  30. [30]
    Shen J, Chen Z, Lin S, Zheng L, Li W, Pei Y. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J Mater Chem C. 2016;4(1):209.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Science, Graduate School of ScienceOsaka Prefecture UniversitySakaiJapan
  2. 2.JST, PRESTOKawaguchiJapan
  3. 3.Department of Electronics, Mathematics and Physics, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations