Rare Metals

pp 1–5 | Cite as

Improving interface adhesion in TiNi wire/shape memory epoxy composites using carbon nanotubes

  • Xue Feng
  • Li-Min Zhao
  • Xu-Jun Mi
  • Guo-Jie Huang
  • Hao-Feng Xie
  • Xiang-Qian Yin
  • Li-Jun Peng
  • Zhen Yang


In order to increase both the interfacial strength and interphase region strength between TiNi wires and shape memory epoxy, a novel interface structure including aminated CNTs was designed. The morphology shows that after electroplating and etching, continuous and homogeneous concave–convex layers form on the surface of as-treated TiNi wires, meanwhile aminated CNTs were planted on the surface which could react with shape memory epoxy at the interface region. The interfacial shear strength increases first with the CNT content rising but then a dramatic drop happens, and the maximum is obtained at CNT content of 0.6 g·L−1, which is about twice the result of acid etching TiNi wires.


Interfacial strength Interface structure Carbon nanotube Shape memory material Composite 



This work was financially supported by the National Natural Science Foundation of China (No. 51201014).


  1. [1]
    Cai Y, Jiang J, Zheng B, Xie M. Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(e-caprolactone)-polyurethane nanocomposites. J Appl Polym Sci. 2013;127(1):49.CrossRefGoogle Scholar
  2. [2]
    Yu K, Liu Y, Leng J. Conductive shape memory polymer composite incorporated with hybrid fillers: electrical, mechanical, and shape memory properties. J Intell Mater Syst Struct. 2011;22:369.CrossRefGoogle Scholar
  3. [3]
    Liu Y, Lv H, Lan X. Review of electro-active shape-memory polymer composite. Compos Sci Technol. 2009;69(13):2064.CrossRefGoogle Scholar
  4. [4]
    Leng J, Lu H, Liu Y. Shape-memory polymers: a class of novel smart materials. MRS Bull. 2009;34(11):848.CrossRefGoogle Scholar
  5. [5]
    Leng J, Lan X, Liu Y. Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci. 2011;56(7):1077.CrossRefGoogle Scholar
  6. [6]
    Leng J, Lan X, Liu Y. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett. 2008;92(1):014104.CrossRefGoogle Scholar
  7. [7]
    Gall K, Mikulas M, Munshi N. carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct. 2000;11(11):877.CrossRefGoogle Scholar
  8. [8]
    Lan X, Liu Y, Lv H. Fiber reinforced shape-memory polymer composite and its application in a deployable Hinge. Smart Mater Struct. 2009;18(2):024002.CrossRefGoogle Scholar
  9. [9]
    Zhang C, Ni Q. Bending behavior of shape memory polymer based laminates. Compos Struct. 2007;78(2):153.CrossRefGoogle Scholar
  10. [10]
    Prima M, Lesniewski M, Gall K, McDowell D, Sanderson T, Campbell D. Thermo-mechanical behavior of epoxy shape memory polymer foams. Smart Mater Struct. 2007;16:2330.CrossRefGoogle Scholar
  11. [11]
    Behl M, Razzaq M, Lendlein A. Multifunctional shape-memory polymers. Adv Mater. 2010;22:3388.CrossRefGoogle Scholar
  12. [12]
    Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature. 2005;434(7035):879.CrossRefGoogle Scholar
  13. [13]
    Liu Y, Gall K, Dunn ML, Mccluskey P. Thermomechanics of shape memory polymer nanocomposites. Mech Mater. 2004;36(10):929.CrossRefGoogle Scholar
  14. [14]
    Faiella G, Antonucci V, Daghia F, Fascia S, Giordano M. Fabrication and thermomechanical characterization of a shape memory alloy hybrid composite. J Intell Mater Syst Struct. 2011;22(3):245.CrossRefGoogle Scholar
  15. [15]
    Payandeh Y, Meraghni F, Patoor E, Eberhardt A. Study of the martensitic transformation in NiTi–epoxy smart composite and its effect on the overall behavior. Mater Des. 2012;39:104.CrossRefGoogle Scholar
  16. [16]
    Tobushi H, Hayashi S, Hoshio K, Makino Y, Miwa N. Bending actuation characteristics of shape memory composite with SMA and SMP. J Intell Mater Syst Struct. 2006;17(12):1075.CrossRefGoogle Scholar
  17. [17]
    Tobushi H, Hoshio K, Hayashi S, Miwa N. Shape memory composite of SMA and SMP and its property. Key Eng Mater. 2007;340–341:1187.CrossRefGoogle Scholar
  18. [18]
    Tobushi H, Hayashi S, Sugimoto Y, Date K. Two-way bending properties of shape memory composite with SMA and SMP. Materials. 2009;2(3):1180.CrossRefGoogle Scholar
  19. [19]
    Ghosh P, Rao A, Srinivasa A. Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater Des. 2013;44:164.CrossRefGoogle Scholar
  20. [20]
    Feng X, Zhao L, Mi X, Li Y, Xie H, Yin X, Gao B. Improved shape memory composites combined with TiNi wire and shape memory epoxy. Mater Des. 2014;50:724.CrossRefGoogle Scholar
  21. [21]
    Jang B, Kishi T. Adhesive strength between TiNi fibers embedded in CFRP composites. Mater Lett. 2005;59(11):1338.CrossRefGoogle Scholar
  22. [22]
    Jonnalagadda K, Kline G, Sottos N. Local displacements and load transfer in shape memory alloy composites. Exp Mech. 1997;37(1):78.CrossRefGoogle Scholar
  23. [23]
    Rossi S, Deflorian F, Pegoretti A. Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf Coat Tech. 2008;202:2214.CrossRefGoogle Scholar
  24. [24]
    Smith N, Antoun G, Ellis A. Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos Part A-Appl Sci Manufact. 2004;35:1307.CrossRefGoogle Scholar
  25. [25]
    Neuking K, Zarifa A, Eggeler G. Surface engineering of shape memory alloy/polymer-composites: improvement of the adhesion between polymers and pseudoelastic shape memory alloys. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2008;481:606.CrossRefGoogle Scholar
  26. [26]
    Lau K, Chan A, Shi S. Debond induced by strain recovery of an embedded NiTi wire at a NiTi/epoxy interface: micro-scale observation. Mater Des. 2002;23:265.CrossRefGoogle Scholar
  27. [27]
    Payandeh Y, Meraghni F, Patoor E. Debonding initiation in a NiTi shape memory wire-epoxy matrix composite. Influence of martensitic transformation. Mater Des. 2010;31:1077.CrossRefGoogle Scholar
  28. [28]
    Coleman J, Khan U, Blau W. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44:1624.CrossRefGoogle Scholar
  29. [29]
    Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630.CrossRefGoogle Scholar
  30. [30]
    Qian H, Bismarck A, Greenhalgh E. Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem Mater. 2008;20:1862.CrossRefGoogle Scholar
  31. [31]
    Zhang J, Zhuang R, Liu J. Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon. 2010;48:2273.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Nonferrous Metals and ProcessGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.College of Materials Science and EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations