Rare Metals

pp 1–8 | Cite as

Phase equilibria of low-Y side in Mg–Zn–Y system at 400 °C

  • Bo-Shu Liu
  • Hong-Xiao Li
  • Yu-Ping Ren
  • Min Jiang
  • Gao-Wu Qin


Phase equilibrium relations of the Mg–Zn–Y system in the low-Y side at 400 °C were investigated by alloy-equilibrated method, combined with thermal analysis. The results show that there is a liquid phase which could be in equilibrium with an α-Mg solid solution and an icosahedral quasicrystal I phase in the low-Y side of the Mg–Zn–Y system at 400 °C. The liquid phase region originates from the binary Mg–Zn system and extends to 0.4 at%Y in the Mg–Zn–Y system. Besides, the hexagonal structure H phase, fcc W phase and LPSO phase (X phase) are in equilibrium with α-Mg. With Y/Zn (atomic ratio, the same as follows) increasing, there exist four three-phase regions consisting of I + liquid + α-Mg, I + H + α-Mg, H + W + α-Mg and W + X + α-Mg, respectively, in the low-Y side of the isothermal section at 400 °C. The two-phase region α-Mg + I phase exists between I + H + α-Mg and I + liquid + α-Mg. In this two-phase region, the Y/Zn ratio is in the range of 0.14–0.17; and a three-phase region of α-Mg + I phase + H phase appears when Y/Zn ratio comes up to 0.17–0.27. Not I but W phase is in equilibrium with α-Mg, when Y/Zn ratio > 0.27. The system is in liquid-state phase equilibrium, when Y/Zn ratio < 0.14.


Mg–Zn–Y system Phase equilibrium Icosahedral quasicrystal phase Solid solubility 



This study was financially supported by the National Natural Science Foundation of China (Nos. 51271053 and 5137104 and the National Key Research and Development Program of China (No. 2016YFB0701202).


  1. [1]
    Zhang L, Zhou W, Hu PH, Zhou Q. Microstructural characteristics and mechanical properties of Mg–Zn–Y alloy containing icosahedral quasicrystal phase treated by pulsed magnetic field. J Alloys Compd. 2016;688:868.CrossRefGoogle Scholar
  2. [2]
    Asgharzadeh H, Yoon EY, Chae HJ, Kim TS, Lee JW, Kim HS. Microstructure and mechanical properties of Mg–Zn–Y alloy produced by a powder metallurgy route. J Alloys Compd. 2014;586(4):S95.CrossRefGoogle Scholar
  3. [3]
    Liu JF, Yang ZQ, Ye HQ. In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg–Zn–Y alloys. J Alloys Compd. 2015;621:179.CrossRefGoogle Scholar
  4. [4]
    Yi S, Park ES, Ok JB. (Icosahedral phase + α-Mg) two phase microstructures in the Mg–Zn–Y ternary system. Mater Sci Eng A. 2001;300(1–2):312.CrossRefGoogle Scholar
  5. [5]
    Ju YL, Lim HK, Kim DH, Kim WT, Kim DH. Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg–Zn–Y alloys. Mater Sci Eng A. 2007;449(12):987.Google Scholar
  6. [6]
    Wan DQ, Yang GC, Man Z. Solidification of Mg–28%Zn–2%Y alloy involving icosahedral quasicrystal phase. Trans Nonferrous Metals Soc China. 2007;17(3):586.CrossRefGoogle Scholar
  7. [7]
    Ju YL, Kim DH, Lim HK. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg–Zn–Y alloys. Mater Lett. 2005;59(29–30):3801.Google Scholar
  8. [8]
    Hu G, Xing B, Huang F, Zhong M, Zhang D. Effect of Y addition on the microstructures and mechanical properties of as-aged Mg–6Zn–1Mn–4Sn (wt%) alloy. J Alloys Compd. 2016;689:326.CrossRefGoogle Scholar
  9. [9]
    Somekawa H, Singh A, Mukai T. High fracture toughness of extruded Mg–Zn–Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase. Scr Mater. 2007;56(12):1091.CrossRefGoogle Scholar
  10. [10]
    Kim IJ, Bae DH, Kim DH. Precipitates in a Mg–Zn–Y alloy reinforced by an icosahedral quasicrystalline phase. Mater Sci Eng A. 2003;359(1–2):313.CrossRefGoogle Scholar
  11. [11]
    Bae DH, Lee MH, Kim KT. Application of quasicrystalline particles as a strengthening phase in Mg–Zn–Y alloys. J Alloys Compd. 2002;342(1):445.CrossRefGoogle Scholar
  12. [12]
    FangX WuS, Lü S. Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg–Zn–Y alloy subjected to ultrasonic vibration. Mater Sci Eng A. 2016;679:372.CrossRefGoogle Scholar
  13. [13]
    Singh A, Watanabe M, Kato A. Formation of icosahedral-hexagonal H phase nano-composites in Mg–Zn–Y alloys. Scr Mater. 2004;51(10):955.CrossRefGoogle Scholar
  14. [14]
    Singh A, Watanabe M, Kato A. Crystallographic orientations and interfaces of icosahedral quasicrystalline phase growing on cubic W phase in Mg–Zn–Y alloys. Mater Sci Eng A. 2005;397(1–2):22.CrossRefGoogle Scholar
  15. [15]
    Jiang M, Su X, Li H. The phase equilibria and thermal stability of the long-period stacking ordered phase in the Mg–Cu–Y system. J Alloys Compd. 2014;593:141.CrossRefGoogle Scholar
  16. [16]
    Liu H, Bai J, Yan K. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg–Y–Zn alloys during annealing at 773K. Mater Des. 2016;93:9.CrossRefGoogle Scholar
  17. [17]
    Abe E, Kawamura Y, Hayashi K. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 2002;50(15):384.CrossRefGoogle Scholar
  18. [18]
    Geng JW, Teng X, Zhou G. Microstructure transformations in the heat-treated Mg–Zn–Y alloy. J Alloys Compd. 2013;577(11):498.CrossRefGoogle Scholar
  19. [19]
    Bae DH, Kim SH, Kim DH. Deformation behavior of Mg–Zn–Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater. 2002;50(9):2343.CrossRefGoogle Scholar
  20. [20]
    Shao G, Varsani V, Fan Z. Thermodynamic modelling of the Y–Zn and Mg–Zn–Y systems. Calphad. 2006;30(3):286.CrossRefGoogle Scholar
  21. [21]
    Gröbner J, Kozlov A, Fang XY. Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys. Acta Mater. 2012;60(17):5948.CrossRefGoogle Scholar
  22. [22]
    Shao G. Erratum to: “Thermodynamic modelling of the Y–Zn and Mg–Zn–Y systems by G. Shao, V. Varsani and Z. Fan” [CALPHAD 30 (2006) 286–295]. Calphad. 2007;31(2):313.CrossRefGoogle Scholar
  23. [23]
    Lebrun N, Stamou A. Ternary Alloys. In: Effenberg G, Aldinger F, Rogl P, editors. Stuttgart: Materials Science International Services; 2001. 702.Google Scholar
  24. [24]
    Wang J, Zhang YN, Hudon P, Jung IH, Medraj M, Chartrand P. Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300 °C. J Alloys Compd. 2015;639:593.CrossRefGoogle Scholar
  25. [25]
    Huang D, Liu S, Xu H, Du Y. Phase equilibria of the Mg–Mn–Zn system at 593 K (320 °C). J Alloys Compd. 2016;688:1115.CrossRefGoogle Scholar
  26. [26]
    Huang ML, Li HX, Ren YP. Isothermal section of Mg–Zn–La system in Mg-rich comer at 400 °C. Trans Nonferrous Metals Soc China. 2007;18(A01):8.Google Scholar
  27. [27]
    Liu Y, Tang M, Zhang Y, Peng H, Wang J, Su X. Phase equilibria of the Al–Co–W system at 600 °C. J Alloys Compd. 2016;678:193.CrossRefGoogle Scholar
  28. [28]
    Fartushna I, Khvan A, Dinsdale A, Cheverikin V, Ivanov D, Kondratiev A. Phase equilibria in the Fe–Mn–Ce system at 900 °C. J Alloys Compd. 2016;658:331.CrossRefGoogle Scholar
  29. [29]
    Yu J, Liu LJ, Chen SD, Chen JC. Phase diagram calculation and predication of Au–Pd–Zr ternary system. Rare Metals. 2017;36(2):142.CrossRefGoogle Scholar
  30. [30]
    Ok JB, Kim IJ, Yi S. Solidification microstructure of as-cast Mg–Zn–Y alloys. Philos Mag A. 2003;83(20):2359.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of EducationNortheastern UniversityShenyangChina

Personalised recommendations