Skip to main content
Log in

Microstructure quantification of Cu–4.7Sn alloys prepared by two-phase zone continuous casting and a BP artificial neural network model for microstructure prediction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Microstructures of Cu–4.7Sn (%) alloys prepared by two-phase zone continuous casting (TZCC) technology contain large columnar grains and small grains. A compound grain structure, composed of a large columnar grain and at least one small grain within it, is observed and called as grain-covered grains (GCGs). Distribution of small grains, their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope. Back propagation (BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters. Inputs of the model are five processing parameters, which are temperatures of melt, mold and cooling water, speed of TZCC, and cooling distance. Outputs of the model are nine microstructure quantities, which are numbers of small grains within columnar grains, at the boundaries of the columnar grains, or at the surface of the alloy, the maximum and the minimum numbers of small grains within a columnar grain, numbers of columnar grains with or without small grains, and sizes of small grains and columnar grains. The model yields precise prediction, which lays foundation for controlling microstructures of alloys prepared by TZCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steele D, Evans D, Nolan P, Lloyd DJ. Quantification of grain boundary precipitation and the influence of quench rate in 6XXX aluminum alloys. Mater Charact. 2007;58(1):40.

    Article  CAS  Google Scholar 

  2. Levinson AJ, Rowenhorst DJ, Lewis AC. Quantification of microstructural Evolution in grain boundary networks. JOM. 2014;66(5):774.

    Article  CAS  Google Scholar 

  3. Yang D, Liu Z. Quantification of microstructural features and prediction of mechanical properties of a dual-phase Ti–6Al–4V alloy. Materials. 2016;9(8):1.

    Google Scholar 

  4. McGarrity KS, Sietsma J, Jongbloed G. Characterisation and quantification of microstructural banding in dual phase steels part 1-general 2D study. Mater Sci Technol. 2012;28(8):895.

    Article  CAS  Google Scholar 

  5. Collins PC, Welk B, Searles T, Tiley J, Russ JC, Fraser HL. Development of methods for the quantification of microstructural features in α + β–processed α/β titanium alloys. Mater Sci Eng A. 2009;508(1–2):174.

    Article  Google Scholar 

  6. Kimura Y, Inoue T, Yin F, Tsuzak K. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science. 2008;320(5879):1057.

    Article  CAS  Google Scholar 

  7. Yvell K, Grehk TM, Engberg G. Microstructure characterization of 316L deformed at high strain rates using EBSD. Mater Charact. 2016;122:14.

    Article  CAS  Google Scholar 

  8. Tseng LW, Ma J, Vollmer M, Krooß P, Niendorf T, Karaman I. Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy. Scr Mater. 2016;125:68.

    Article  CAS  Google Scholar 

  9. Tiley J, Searles T, Lee E, Kar S, Banerjee R, Russ JC, Fraser HL. Quantification of microstructural features in α/β titanium alloys. Mater Sci Eng A. 2004;372(1–2):191.

    Article  Google Scholar 

  10. Liu XF, Luo JH, Wang XC, Wang L, Xie JX. Columnar grains-covered small grains Cu–Sn alloy prepared by two-phase zone continuous casting. Prog Nat Sci. 2013;23(1):94.

    Article  Google Scholar 

  11. Liu XF, Luo JH, Wang XC. Surface quality, microstructure and mechanical properties of Cu–Sn alloy plate prepared by two-phase zone continuous casting. Trans Nonferr Met Soc China. 2015;25(6):1901.

    Article  CAS  Google Scholar 

  12. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32(4):1733.

    Article  CAS  Google Scholar 

  13. Reddy N, Lee YH, Park CH, Lee CS. Prediction of flow stress in Ti–6Al–4V alloy with an equiaxed α + β microstructure by artificial neural networks. Mater Sci Eng A. 2008;492(12):276.

    Article  Google Scholar 

  14. Tao ZJ, Yang H, Li H, Ma J, Gao PF. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models. Rare Met. 2016;35(2):162.

    Article  CAS  Google Scholar 

  15. Kusiak J, Kuziak R. Modelling of microstructure and mechanical properties of steel using the artificial neural network. J Mater Process Technol. 2002;127(1):115.

    Article  CAS  Google Scholar 

  16. Yu X, Ye C, Xiang L. Application of artificial neural network in the diagnostic system of osteoporosis. Neurocomputing. 2016;214:376.

    Article  Google Scholar 

  17. Lu C. Study on prediction of surface quality in machining process. J Mater Process Technol. 2008;205(1–3):439.

    Article  Google Scholar 

  18. Luca D. Neural networks for parameters prediction of an electromagnetic forming process of FeP04 steel sheets. Int J Adv Manuf Technol. 2015;80(1–4):689.

    Article  Google Scholar 

  19. Guo L, Li B, Zhang Z. Constitutive relationship model of TC21 alloy based on artificial neural network. Trans Nonferr Met Soc China. 2013;23(6):1761.

    Article  CAS  Google Scholar 

  20. Powar A, Date P. Modeling of microstructure and mechanical properties of heat treated components by using artificial neural network. Mater Sci Eng A. 2015;628:89.

    Article  CAS  Google Scholar 

  21. Zhou J, Wan X, Zhang J, Yan Z, Li Y. Modeling of constitutive relationship of aluminum alloy based on BP neural network model. Mater Today. 2015;2(10):5023.

    Google Scholar 

  22. Zhao J, Ding H, Zhao W, Huang M, Wei D, Jiang Z. Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network. Comput Mater Sci. 2014;92(5):47.

    Article  CAS  Google Scholar 

  23. Luo J, Li M. Modeling of grain size in isothermal compression of Ti–6Al–4V alloy using fuzzy neural network. Rare Met. 2011;30(6):555.

    Article  CAS  Google Scholar 

  24. Jiang L, Wang A, Tian N, Zhang W, Fan Q. BP neural network of continuous casting technological parameters and secondary dendrite arm spacing of spring steel. J Iron Steel Res Int. 2011;18(8):25.

    Article  Google Scholar 

  25. Haghdadi N, Zarei-Hanzaki A, Khalesian AR, Abedi HR. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des. 2013;49:386.

    Article  CAS  Google Scholar 

  26. Setti SG, Rao RN. Artificial neural network approach for prediction of stress–strain curve of near β titanium alloy. Rare Met. 2014;33(3):249.

    Article  Google Scholar 

  27. Ozerdem MS, Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys. Mater Des. 2009;30(3):764.

    Article  CAS  Google Scholar 

  28. Sun W, Tian M, Zhang P, Wei H, Hou G, Wang Y. Optimization of plating processing, microstructure and properties of Ni–TiC coatings based on BP artificial neural networks. Trans Indian Inst Met. 2016;69(8):1501.

    Article  CAS  Google Scholar 

  29. Djavanroodi F, Omranpour B, Sedighi M. Artificial neural network modeling of ECAP process. Mater Manuf Process. 2013;28(3):276.

    Article  CAS  Google Scholar 

  30. Sun Z, Yang H, Tang Z. Microstructural evolution model of TA15 titanium alloy based on BP neural network method and application in isothermal deformation. Comput Mater Sci. 2010;50(2):308.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Plan of China (No. 2016YFB0301300), the National Natural Science Foundation of China (Nos. 51374025, 51674027 and U1703131), and the Beijing Municipal Natural Science Foundation (No. 2152020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, JH., Liu, XF., Shi, ZZ. et al. Microstructure quantification of Cu–4.7Sn alloys prepared by two-phase zone continuous casting and a BP artificial neural network model for microstructure prediction. Rare Met. 38, 1124–1130 (2019). https://doi.org/10.1007/s12598-018-1023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1023-0

Keywords

Navigation