Rare Metals

pp 1–11 | Cite as

Texture evolution behavior and anisotropy of 2A97 Al–Li alloy during recrystallization at elevated temperature

  • Dong Wang
  • Chong Gao
  • Hong-Yun Luo
  • Yong-Hong Yang
  • Yue Ma


2A97 Al–Li alloy was cold-rolled to 2 mm and then thermally exposed at different temperatures for 1 h and at 723 K for different time, respectively. The texture evolution behavior and the anisotropy of 2A97 Al–Li alloy were investigated. The result shows that the {001} 〈120〉 and {011} 〈233〉 textures are the dominant recrystallization texture. The {124} 〈211〉 texture is the final recrystallization texture. In case of low-temperature thermal exposure (473, 573 K), the {011} 〈211〉 texture is aggregated to the {112} 〈111〉 and {123} 〈634〉 textures. During the recrystallization at 723 K, the {001} 〈110〉, {111} 〈112〉 and {011} 〈100〉 textures are the intermediate transition grain orientations. The concurrent precipitation of Al20Cu2Mn3 and Al3Zr results in the occurrence of unusually sharp {011} 〈233〉 and {001} 〈120〉 texture components during recrystallization. The alloy with both recrystallization and deformation texture possesses the smallest anisotropic, and the texture is the direct reason that results in the anisotropy.


Al–Li alloy 2A97 Crystallographic texture Texture evolution Anisotropy 



This study was financially supported by the National Natural Science Foundation of China (Nos. U1537212, 51471019 and 51271011) and the National Key Research and Development Program of China (No. 2016YFB0300901).


  1. [1]
    Gao C, Gao R, Ma Y. Microstructure and mechanical properties of friction spot welding aluminium–lithium 2A97 alloy. Mater Des. 2015;83:719.CrossRefGoogle Scholar
  2. [2]
    Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862.CrossRefGoogle Scholar
  3. [3]
    Ghosh A, Adesola A, Szpunar JA, Odeshi AG, Gurao NP. Effect of tempering conditions on dynamic deformation behaviour of an aluminium–lithium alloy. Mater Des. 2015;81:1.CrossRefGoogle Scholar
  4. [4]
    Chong G, Yang L, Yu JC, Yue M. Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al–Li alloy. T Nonferr Metal Soc. 2014;24(7):2196.CrossRefGoogle Scholar
  5. [5]
    Li GC, Ma Y, He XL, Wei L, Li PY. Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process. T Nonferr Metal Soc. 2012;22(5):1112.CrossRefGoogle Scholar
  6. [6]
    Yao J, Zhao H, Yu L, Ma Y, Li Y, Xu H. Damping performance and mechanism of high strength aluminum alloy prepared by rapidly solidified/power metallurgy process. Int J Mod Phys B. 2006;20(25):3663.CrossRefGoogle Scholar
  7. [7]
    Zhang JX, Fan JX, Liu YT, Feng W. Superplasticity of 6016 aluminum alloy at elevated temperatures. Rare Met. 2015;34(6):387.CrossRefGoogle Scholar
  8. [8]
    Wang CP, Tang ZJ, Mei HS, Wang L, Li RQ, Li DF. Formation of spheroidal microstructure in semi-solid state and thixoforming of 7075 high strength aluminum alloy. Rare Met. 2015;34(10):710.CrossRefGoogle Scholar
  9. [9]
    Narayanasamy R, Ravindran R, Manonmani K, Satheesh J. A crystallographic texture perspective formability investigation of aluminium 5052 alloy sheets at various annealing temperatures. Mater Des. 2009;30(5):1804.CrossRefGoogle Scholar
  10. [10]
    Hirsch J, Al-Samman T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818.CrossRefGoogle Scholar
  11. [11]
    Ma M, Wang W, Zhang J, Liu W. The role of oriented growth in P texture development in Al–Mn–Mg aluminum alloy. J Mater Eng Perform. 2014;23(9):3257.CrossRefGoogle Scholar
  12. [12]
    Shen F, Wang B, Yi D, Liu H, Tang C, Shou W. Effects of heating rate during solid-solution treatment on microstructure and fatigue properties of AA2524 T3 Al–Cu–Mg sheet. Mater Des. 2016;104:116.CrossRefGoogle Scholar
  13. [13]
    Ryu J-H, Lee DN. The effect of precipitation on the evolution of recrystallization texture in AA8011 aluminum alloy sheet. Mater Sci Eng A. 2002;336(1–2):225.CrossRefGoogle Scholar
  14. [14]
    Huang K, Li YJ, Marthinsen K. Factors affecting the strength of P{011} 〈566〉 -texture after annealing of a cold-rolled Al–Mn–Fe–Si alloy. J Mater Sci. 2015;50(14):5091.CrossRefGoogle Scholar
  15. [15]
    Jain VK, Jata KV, Rioja RJ, Morgan JT, Hopkins AK. Processing of an experimental aluminum–lithium alloy for controlled microstructure. J Mater Process Technol. 1998;73(1–3):108.CrossRefGoogle Scholar
  16. [16]
    Rioja RJ. Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications. Mater Sci Eng A. 1998;257(1):100.CrossRefGoogle Scholar
  17. [17]
    El-Danaf E, Baig M, Almajid A, Alshalfan W, Al-Mojil M, Al-Shahrani S. Mechanical, microstructure and texture characterization of API X65 steel. Mater Des. 2013;47:529.CrossRefGoogle Scholar
  18. [18]
    Jata K, Hopkins A, Rioja R (1996) The anisotropy and texture of Al–Li alloys. In: Proceedings of the 5th international conference on aluminium alloy, Switzerland, 647.Google Scholar
  19. [19]
    Li S, Kang SB, Ko HS. Effect of intermediate annealing on texture evolution and plastic anisotropy in an Al–Mg autobody alloy. Metall Mater Trans A. 2000;31(1):99.CrossRefGoogle Scholar
  20. [20]
    Ibe G, Dietz W, Fraker A, Lucke K. Vorzugsorientierungen bei der Rekristallisation Gedehnter Einkristalle aus Reinst-Aluminium. Z Metallkd. 1970;61:498.Google Scholar
  21. [21]
    Sidor JJ, Petrov RH, Kestens LAI. Modeling the crystallographic texture changes in aluminum alloys during recrystallization. Acta Mater. 2011;59(14):5735.CrossRefGoogle Scholar
  22. [22]
    Basu I, Chen M, Loeck M, Al-Samman T, Molodov DA. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements. Mater Charact. 2016;117:99.CrossRefGoogle Scholar
  23. [23]
    Chen B, Guo MF, Zheng JX, Zhang KY, Fan Y, Zhou LY, Li XL, Lu C. The effect of thermal exposure on the microstructures and mechanical properties of 2198 Al–Li Alloy. Adv Eng Mater. 2016;18(7):1225.CrossRefGoogle Scholar
  24. [24]
    Liu WC, Morris JG. Evolution of recrystallization and recrystallization texture in continuous-cast AA 3015 aluminum alloy. Metall Mater Trans A. 2005;36(10):2829.CrossRefGoogle Scholar
  25. [25]
    Xia SL, Ma M, Zhang JX, Wang WX, Liu WC. Effect of heating rate on the microstructure, texture and tensile properties of continuous cast AA 5083 aluminum alloy. Mater Sci Eng A. 2014;609:168.CrossRefGoogle Scholar
  26. [26]
    Somerday M, Humphreys FJ. Recrystallisation behaviour of supersaturated Al–Mn alloys Part 1—Al–1.3wt%Mn. Mater Sci Technol. 2003;19(1):20.CrossRefGoogle Scholar
  27. [27]
    Tsivoulas D, Prangnell PB. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet. Acta Mater. 2014;77:1.CrossRefGoogle Scholar
  28. [28]
    Daaland O, Nes E. Recrystallization texture development in commercial Al·Mn·Mg alloys. Acta Mater. 1996;44(4):1413.CrossRefGoogle Scholar
  29. [29]
    Liu J, Morris JG. Recrystallization textures of continuous cast AA 3015 alloy: development of the P orientation 011 〈566〉. Metall Mater Trans A. 2003;34(9):2029.CrossRefGoogle Scholar
  30. [30]
    Tangen S, Sjølstad K, Furu T, Nes E. Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al–Mn Alloy. Metall Mater Trans A. 2010;41(11):2970.CrossRefGoogle Scholar
  31. [31]
    Rioja RJ, Liu J. The evolution of Al–Li base products for aerospace and space applications. Metall Mater Trans A. 2012;43(9):3325.CrossRefGoogle Scholar
  32. [32]
    Wang X, Guo M, Chapuis A, Luo J, Zhang J, Zhuang L. The dependence of final microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheets on the intermediate annealing. Mater Sci Eng A. 2015;633:46.CrossRefGoogle Scholar
  33. [33]
    Peng G, Chen K, Fang H, Chen S. Effect of Cr and Yb additions on microstructure and properties of low copper Al–Zn–Mg–Cu–Zr alloy. Mater Des. 2012;36:279.CrossRefGoogle Scholar
  34. [34]
    Riddle YW, Sanders TH. A study of coarsening, recrystallization, and morphology of microstructure in Al–Sc–(Zr)–(Mg) alloys. Metall Mater Trans A. 2004;35(1):341.CrossRefGoogle Scholar
  35. [35]
    Bois-Brochu A, Blais C, Goma FAT, Larouche D, Boselli J, Brochu M. Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties. Mater Sci Eng A. 2014;597:62.CrossRefGoogle Scholar
  36. [36]
    Mishra S, Darmann C. Role and control of texture in deep-drawing steels. Int Mater Rev. 1982;27(1):307.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.China Alco Research Institute of Science and TechnologyBeijingChina
  3. 3.Xi’an Aerospace Propulsion InstituteXi’an National Civil Aerospace Industrial BaseXi’anChina

Personalised recommendations