Rare Metals

, Volume 37, Issue 4, pp 326–332 | Cite as

Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect

  • Shan-Shan Zhang
  • Ding-Feng Yang
  • Nusrat Shaheen
  • Xing-Chen Shen
  • Dan-Dan Xie
  • Yan-Ci Yan
  • Xu Lu
  • Xiao-Yuan Zhou


In this study, we report the effect of Zn doping on the thermoelectric properties of Co1−x Zn x SbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increases from 0.17 to 0.34 at 875 K for Co0.95Zn0.05SbS0.85Se0.15 sample, due to the noticeable decrease in the lattice thermal conductivity by introducing point defect, which is further confirmed by an analysis based on the Debye–Callaway–Klemens model. Meanwhile, the thermoelectric power factor is maintained at high temperatures. This work highlights the important role of point defect in improving the thermoelectric performance of CoSbS-based compounds.


CoSbS Point defect Thermal conductivity Thermoelectric performance 



This work was financially supported by the National Natural Science Foundation of China (Nos. 11344010, 11404044 and 51472036) and the Fundamental Research Funds for the Central Universities (No. 106112016CDJZR308808).


  1. [1]
    Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.CrossRefGoogle Scholar
  2. [2]
    Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD. Thermoelectric devices for power generation: recent progress and future challenges. Adv Eng Mater. 2016;18(2):194.CrossRefGoogle Scholar
  3. [3]
    Sales BC. Thermoelectric materials—smaller is cooler. Science. 2002;295(5558):1248.CrossRefGoogle Scholar
  4. [4]
    DiSalvo FJ. Thermoelectric cooling and power generation. Science. 1999;285(5428):703.CrossRefGoogle Scholar
  5. [5]
    Tan GJ, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123.CrossRefGoogle Scholar
  6. [6]
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.CrossRefGoogle Scholar
  7. [7]
    Pei YZ, LaLonde AD, Heinz NA, Shi XY, Iwanaga S, Wang H, Chen LD, Snyder GJ. Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv Mater. 2011;23(47):5674.CrossRefGoogle Scholar
  8. [8]
    Sales BC, Mandrus D, Williams RK. Filled skutterudite antimonides: a new class of thermoelectric materials. Science. 1996;272(5266):1325.CrossRefGoogle Scholar
  9. [9]
    Qian X, Xiao Y, Zheng L, Qin BC, Zhou YM, Pei YL, Yuan BF, Zhao LD. Effective dopants in p-type elementary Te thermoelectrics. Rsc Adv. 2017;7(29):17682.CrossRefGoogle Scholar
  10. [10]
    Shen JW, Chen ZW, Lin SQ, Zheng LL, Li W, Pei YZ. Single parabolic band behavior of thermoelectric p-type CuGaTe2. J Mater Chem C. 2016;4(1):209.CrossRefGoogle Scholar
  11. [11]
    Pei YZ, LaLonde AD, Wang H, Snyder GJ. Low effective mass leading to high thermoelectric performance. Energy Environ Sci. 2012;5(7):7963.CrossRefGoogle Scholar
  12. [12]
    Pei YL, Tan GJ, Feng D, Zheng L, Tan Q, Xie XB, Gong SK, Chen Y, Li JF, He JQ, Kanatzidis MG, Zhao LD. Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system. Adv Energy Mater. 2017;7(3):1450.CrossRefGoogle Scholar
  13. [13]
    Fu CG, Zhu TJ, Liu YT, Xie HH, Zhao XB. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ Sci. 2015;8(1):216.CrossRefGoogle Scholar
  14. [14]
    Nolas GS. Semiconductor clathrates: a PGEC system with potential for thermoelectric applications. In: Tritt TM, editor. Semiconductors and Semimetals. New York: Academic Press; 2001. p. 435.Google Scholar
  15. [15]
    Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):554.CrossRefGoogle Scholar
  16. [16]
    Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu J, Chen G, Ren ZF. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.CrossRefGoogle Scholar
  17. [17]
    Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004;303(5659):818.CrossRefGoogle Scholar
  18. [18]
    Kim S, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109.CrossRefGoogle Scholar
  19. [19]
    Shen JW, Zhang XY, Chen ZW, Lin SQ, Li J, Li W, Li SS, Chen Y, Pei YZ. Substitutional defects enhancing thermoelectric CuGaTe2. J Mater Chem A. 2017;5(11):5314.CrossRefGoogle Scholar
  20. [20]
    Pei YZ, Morelli DT. Vacancy phonon scattering in thermoelectric In2Te3–InSb solid solutions. Appl Phys Lett. 2009;94(12):54.CrossRefGoogle Scholar
  21. [21]
    Parker D, May AF, Wang H, McGuire MA, Sales BC, Singh DJ. Electronic and thermoelectric properties of CoSbS and FeSbS. Phys Rev B. 2013;88(15):104.CrossRefGoogle Scholar
  22. [22]
    Cabri LJ, Harris DC, Stewart TM. Costibite (CoSbS), a new mineral from Broken Hill, NSW, Australia. Am Mineral. 1970;55(1–2):10.Google Scholar
  23. [23]
    Carlini R, Artini C, Borzone G, Masini R, Zanicchi G, Costa GA. Synthesis and characterisation of the compound CoSbS. J Therm Anal Calorim. 2011;103(1):23.CrossRefGoogle Scholar
  24. [24]
    Liu ZH, Geng HY, Shuai J, Wang ZY, Mao J, Wang DZ, Jiea Q, Caib W, Sui JH, Ren ZF. The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. J Mater Chem C. 2015;3(40):10442.CrossRefGoogle Scholar
  25. [25]
    Chmielowski R, Bhattacharya S, Xie W, Pere D, Jacob S, Stern R, Moriya K, Weidenkaff A, Madsenb GKH, Dennlera G. High thermoelectric performance of tellurium doped paracostibite. J Mater Chem C. 2016;4(15):3094.CrossRefGoogle Scholar
  26. [26]
    Yao W, Yang DF, Yan YC, Peng KL, Zhan H, Liu AP, Lu X, Wang GY, Zhou XY. Synergistic strategy to enhance the thermoelectric properties of CoSbS1−xSex compounds via solid solution. ACS Appl Mater Interfaces. 2017;9(12):10595.CrossRefGoogle Scholar
  27. [27]
    Yang J, Meisner GP, Chen L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl Phys Lett. 2004;85(7):1140.CrossRefGoogle Scholar
  28. [28]
    Wang H, LaLonde AD, Pei YZ, Snyder GJ. The criteria for beneficial disorder in thermoelectric solid solutions. Adv Funct Mater. 2013;23(12):1586.CrossRefGoogle Scholar
  29. [29]
    Aydemir U, Zevalkink A, Ormeci A, Gibbs ZM, Bux S, Snyder GJ. Thermoelectric enhancement in BaGa2Sb2 by Zn doping. Chem Mater. 2015;27(5):1622.CrossRefGoogle Scholar
  30. [30]
    Peng KL, Lu X, Zhan H, Hui S, Tang XD, Wang GW, Dai JY, Uher C, Zhou XY. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci. 2016;9(2):454.CrossRefGoogle Scholar
  31. [31]
    Lu X, Yao W, Wang GW, Zhou XY, Morelli D, Zhang YS, Chi H, Hu S, Uhere C. Band structure engineering in highly degenerate tetrahedrites through isovalent doping. J Mater Chem A. 2016;4(43):17096.CrossRefGoogle Scholar
  32. [32]
    Li J, Sui JH, Pei YL, Barreteau C, Berardan D, Dragoe N, Cai W, He JQ, Zhao LD. A high thermoelectric figure of merit zT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci. 2012;5(9):8543.CrossRefGoogle Scholar
  33. [33]
    Skoug EJ, Cain JD, Morelli DT, Kirkham M, Majsztrik P, Lara-Curzio E. Lattice thermal conductivity of the Cu3SbSe4–Cu3SbS4 solid solution. J Appl Phys. 2011;110(2):302.CrossRefGoogle Scholar
  34. [34]
    Cahill DG, Pohl RO. Heat-flow and lattice-vibrations in glasses. Solid State Commun. 1989;70(10):927.CrossRefGoogle Scholar
  35. [35]
    Shuai J, Geng HY, Lan YC, Zhu Z, Wang C, Liu ZH, Baod J, Ren ZF. Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)(1−x)CaxMg2Bi2 by band engineering and strain fluctuation. Proc Natl Acad Sci USA. 2016;113(29):E4125.CrossRefGoogle Scholar
  36. [36]
    Shen JW, Zhang XY, Lin SQ, Li J, Chen ZW, Li W, Chen ZW, Li W, Pei YZ. Vacancy scattering for enhancing the thermoelectric performance of CuGaTe2 solid solutions. J Mater Chem A. 2016;4(40):15464.CrossRefGoogle Scholar
  37. [37]
    Klemens PG. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc Lond A. 1955;68(12):1113.CrossRefGoogle Scholar
  38. [38]
    Klemens PG. Thermal resistance due to point defects at high temperatures. Phys Rev B. 1960;119(2):507.CrossRefGoogle Scholar
  39. [39]
    Callaway J, Vonbaeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev B. 1960;120(4):1149.CrossRefGoogle Scholar
  40. [40]
    Abeles B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev Lett. 1963;131(5):1906.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsChongqing UniversityChongqingChina
  2. 2.Institute of Microstructure and Properties of Advanced MaterialsBeijing University of TechnologyBeijingChina

Personalised recommendations