Rare Metals

pp 1–8 | Cite as

Microstructure, mechanical and thermal properties of Ni–P(–SiC) coating on high volume fraction SiCp/Al composite

  • Gui-Wu Liu
  • Wen-Qiang Luo
  • Xiang-Zhao Zhang
  • Hai-Cheng Shao
  • Tie-Zheng Pan
  • Guan-Jun Qiao


Ni–P(–SiC) composite coatings were successfully deposited on 70 vol% SiCp/Al composite by electroless plating. The surface microstructures and the phase structures of the Ni–P(–SiC) coatings were examined and analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) before and after heat-treatment at 200–400 °C for 2 h. The thermal diffusivity of the deposited samples and the interface adhesion between the coating and the substrate were investigated. The experimental results show that SiC content in the coatings increases obviously and XRD peaks are enhanced with SiC content in the bath increasing from 3 to 9 g·L−1. After heat-treatment, the surface of the coating becomes smoother and no diffusion layer is produced at the interface. A new phase Ni3P forms in the coating during heat-treatment at 400 °C. The critical load (L c) of Ni–P–SiC composite coating on SiCp/Al composite reaches the maximum value of 84.9 N with SiC content of 3 g·L−1 after heat-treatment at 200 °C and more or less decreases with the increase in SiC content and heat-treatment temperature. The thermal diffusivity of deposited samples gradually increases as the temperature increases; however, it reduces firstly and then climbs with the increase in SiC content.


Ni–P–SiC coating SiCp/Al composite Microstructure Adhesion force Thermal diffusivity 



This study was financially supported by the National Natural Science Foundation of China (Nos. 51572112 and 51172177), the Natural Science Foundation of Jiangsu Province (Nos. BK20151340), the Six Talent Peaks Project of Jiangsu Province (No. 2014-XCL-002), the Postdoctoral Science Foundation of China (No. 2014M551512) and the Innovation/Entrepreneurship Program of Jiangsu Province (Nos. [2013]477 and [2015]26).


  1. [1]
    Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1990;26(5):1137.CrossRefGoogle Scholar
  2. [2]
    Davis LC, Artz BE. Thermal conductivity of metal-matrix composites. J App Phys. 1995;77(10):4954.CrossRefGoogle Scholar
  3. [3]
    Lee HS, Hong SH. Pressure infiltration casting process and thermophysical properties of high volume fraction SiCp/Al metal matrix composites. Mater Sci Technol. 2003;19(8):1057.CrossRefGoogle Scholar
  4. [4]
    Garcia R, Lopez VH, Kennedy AR, Arias G. Welding of Al-359/20%SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA). J Mater Sci. 2007;42(18):7794.CrossRefGoogle Scholar
  5. [5]
    Huang JH, Dong YL, Zhang JG, Wan Y, Zhou GA. Reactive diffusion bonding of SiCp/Al composites by insert powder layers with eutectic composition. J Mater Sci Technol. 2005;21(5):779.Google Scholar
  6. [6]
    Liu LM, Zhu ML, Pan LX, Wu L. Studying of micro-bonding in diffusion welding joint for composite. Mater Sci Eng A. 2001;A315(1–2):103.Google Scholar
  7. [7]
    Zhang Y, Yan JC, Chen XG, Cui Y. Ultrasonic dissolution of brazing of 55% SiCp/A356 composites. Trans Nonferrous Met Soc China. 2010;20(5):746.CrossRefGoogle Scholar
  8. [8]
    Wang XH, Niu JT, Guan SK, Wang LJ, Cheng DF. Investigation on TIG welding of SiCp-reinforced aluminum–matrix composite using mixed shielding gas and Al–Si filler. Mater Sci Eng A. 2009;499(1–2):106.Google Scholar
  9. [9]
    Lu JB, Mu YC, Luo XW, Niu JT. A new method for soldering particle-reinforced aluminum metal matrix composites. Mater Sci Eng B. 2012;177(20):1759.CrossRefGoogle Scholar
  10. [10]
    Niu JT, Zhang DK, Ji GJ. Mechanism of laser beam welding for SiCP/6063Al composite. Rare Met. 2002;21(2):123.Google Scholar
  11. [11]
    Sudagar J, Lian JS, Sha W. Electroless nickel, alloy, composite and nano coatings–a critical review. J Alloys Compd. 2013;44(31):183.CrossRefGoogle Scholar
  12. [12]
    Li LB, An MZ, Wu GH. A new electroless nickel deposition technique to metallise SiCp/Al composites. Surf Coat Technol. 2006;200(16):5102.CrossRefGoogle Scholar
  13. [13]
    Yang DL, Qiu F, Lei ZK, Zhao QL, Jiang QC. The interfacial structure and mechanical properties of Ti5Si3-coated SiCP/Al2014 composites fabricated by powder metallurgy with hot pressing. Mater Sci Eng A. 2016;661(20):217.CrossRefGoogle Scholar
  14. [14]
    Zhao SS, Du H, Zheng JQ, Yang Y, Wang W, Gong J, Sun C. Deposition of thick TiAlN coatings on 2024 Al/SiCp substrate by arc ion plating. Surf Coat Technol. 2008;202(21):5170.CrossRefGoogle Scholar
  15. [15]
    Li LB, An MZ. Electroless nickel–phosphorus plating on SiCp/Al composite from acid bath with nickel activation. J Alloys Compd. 2008;461(1):85.CrossRefGoogle Scholar
  16. [16]
    Fang M, Ling HU, Yang L, Shi CD, Wu YC, Tang WM. Electroless plating and growth kinetics of Ni–P alloy film on SiCp/Al composite with high SiC volume fraction. Trans Nonferrous Met Soc China. 2016;26(3):799.CrossRefGoogle Scholar
  17. [17]
    Zou AH, Zhou XL, Hua XZ, Li DS, Wu KY. The microstructure and thermal conductivity of pressureless infiltrated SiCp/Al composites containing electroless nickel platings. Adv Mater Sci Eng. 2015;2015:1.CrossRefGoogle Scholar
  18. [18]
    Li JZ, Tian YW, Li Y, Wang XR. Effect of rare earth addition on structure and properties of Ni–P coating on SiCp/Al composites. J Rare Earths. 2010;28(5):769.CrossRefGoogle Scholar
  19. [19]
    Wu M, Chang LL, Peng ZR, Feng ZL, Yong WN, Wang W, He XB, Qu XH. Investigation of Al-based Alloys for brazing SiCp/Al composites. Rare Met Mater Eng. 2011;40(S3):132.Google Scholar
  20. [20]
    Zhao HF, Tang WZ, Li CM, Chen GC, Lu FX, Cai YH, Guo H, Zhang RQ, Zhang PW. Thermal conductive properties of Ni–P electroless plated SiCp/Al composite electronic packaging material. Surf Coat Technol. 2008;202(12):2540.CrossRefGoogle Scholar
  21. [21]
    Soleimani R, Mahboubi F, Arman SY, Kazemi M, Maniee A. Development of mathematical model to evaluate microstructure and corrosion behavior of electroless Ni–P/nano-SiC coating deposited on 6061 aluminum alloy. J Ind Eng Chem. 2015;23(25):328.CrossRefGoogle Scholar
  22. [22]
    Gou YN, Huang WJ, Zeng RC, Zhu Y. Influence of pH values on electroless Ni–P–SiC plating on AZ91D magnesium alloy. Trans Nonferrous Met Soc China. 2010;20(S2):S674.CrossRefGoogle Scholar
  23. [23]
    Zhang SS, Han KJ, Cheng L. The effect of SiC particles added in electroless Ni–P plating solution on the properties of composite coatings. Surf Coat Technol. 2008;202(12):2807.CrossRefGoogle Scholar
  24. [24]
    Wang CM, Wang JQ, Zhang B, Niu RB, Yu JK, Jing Q. Ni–P coating on AZ31 magnesium alloy and its crystallization. Rare Met. 2013;32(5):465.CrossRefGoogle Scholar
  25. [25]
    Zhou HM, Jia Y, Li J, Yao SH. Corrosion and wear resistance behaviors of electroless Ni–Cu–P–TiN composite coating. Rare Met. 2016;. doi: 10.1007/s12598-015-0663-6.Google Scholar
  26. [26]
    Farzaneh A, Mohammadi M, Ehteshamzadeh M, Mohammadi F. Electrochemical and structural properties of electroless Ni–P–SiC nanocomposite coatings. Appl Surf Sci. 2013;276(3):697.CrossRefGoogle Scholar
  27. [27]
    Malfatti CF, Ferreira JZ, Oliveira CT, Rieder ES, Bonino JB. Electrochemical behavior of Ni–P–SiC composite coatings: effect of heat treatment and SiC particle incorporation. Mater Corros. 2012;63(1):36.CrossRefGoogle Scholar
  28. [28]
    Malfatti CF, Veit HM, Menezes TL, Ferreira JZ, Rodrogues JS, Bonino JB. The surfactant addition effect in the elaboration of electrodepositated NiP–SiC composite coatings. Surf Coat Technol. 2007;201(14):6318.CrossRefGoogle Scholar
  29. [29]
    Chang CS, Hou KH, Ger MD, Chung CK, Lin JF. Effects of annealing temperature on micro structure, surface roughness, mechanical and tribological properties of Ni–P and Ni–P/SiC films. Surf Coat Technol. 2016;288(25):135.CrossRefGoogle Scholar
  30. [30]
    Ma CY, Wu FF, Ning YM, Xia FF, Liu YF. Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings. Ceram Int. 2014;40(7):9279.CrossRefGoogle Scholar
  31. [31]
    Gao JQ, Liu L, Wu YT, Sshen B, Hu WB. Electroless Ni–P–SiC composite coatings with superfine particles. Surf Coat Technol. 2006;200(20):5836.Google Scholar
  32. [32]
    Pitchuman R, Liaw RK, Yao SC, Hsu DK, Jeong H. Theoretical models for the anisotropic conductivity of two-phase and three-phase metal-matrix composites. Acta Metall Mater. 1995;43(8):3045.CrossRefGoogle Scholar
  33. [33]
    Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater. 1987;21(6):508.CrossRefGoogle Scholar
  34. [34]
    Nan CW, Birringer R, Davaid RC, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81(51):6692.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Suzhou Pant Piezoelectric Tech Co. Ltd.SuzhouChina
  3. 3.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations