Advertisement

Rare Metals

, Volume 37, Issue 3, pp 204–209 | Cite as

Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment

  • Shao-Lin Li
  • Hong-Yu Qi
  • Xiao-Guang Yang
Article

Abstract

Turbine blades and vans operated in an aggressive gas environment usually suffer from combined oxidation and cycle loading effects. The surface oxide layer will result in premature failure and lead to a significant reduction in the service lifetime. The effects of prior oxidation-induced damage under a simulated combustion-gas environment on the fatigue lifetime of the directionally solidified (DS) nickel-based superalloy DZ125 with and without an oxidation-resistant coating were presented. The fatigue lifetime of uncoated samples is adversely affected by prior oxidation exposure. The deterioration of fatigue lifetime in uncoated samples is associated with surface microstructural degradation, which occurs during prior exposure. However, the presence of MCrAlY coating is beneficial for the sample’s lifetime under high stress. Further scanning electron microscopy (SEM) analysis demonstrates that the coating does not contribute to the initiation mode of fatigue cracks.

Keywords

Gas environment Fatigue Lifetime Coating Superalloy 

Notes

Acknowledgements

This study was financially supported by National Basic Research Program of China (No. 2015CB057401).

References

  1. [1]
    Li J, Wang HM. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy René 41 by laser melting deposition manufacturing. Mater Sci Eng A. 2010;527(18–19):4823.CrossRefGoogle Scholar
  2. [2]
    Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power. 2006;22(2):361.CrossRefGoogle Scholar
  3. [3]
    Huang J, Shi DQ, Yang XG. A physically based methodology for predicting anisotropic creep properties of Ni-based superalloys. Rare Met. 2016;35(8):606.CrossRefGoogle Scholar
  4. [4]
    Li FL, Fu R, Feng D, Tian ZL. Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure. Rare Met. 2015;34(1):51.CrossRefGoogle Scholar
  5. [5]
    Shi DQ, Hu XA, Wang JK, Yu HC, Yang XG, Huang J. Effect of notch on fatigue behaviour of a directionally solidified superalloy at high temperature. Fatigue Fract Eng Mater Struct. 2013;36(12):1288.CrossRefGoogle Scholar
  6. [6]
    Xie G, Zhang J, Lou LH. Effect of heat treatment atmosphere on surface recrystallization of a directionally solidified Ni-base superalloy. Scr Mater. 2008;59(8):858.CrossRefGoogle Scholar
  7. [7]
    Jo CY, Cho HY, Kim HM. Effect of recrystallisation on microstructural evolution and mechanical properties of single crystal nickel base superalloy CMSX-2. Part 1-Microstructural evolution during recrystallisation of single crystal. Mater Sci Technol. 2003;19(12):1665.CrossRefGoogle Scholar
  8. [8]
    Gordon AP, Neu RW, McDowell DL. Effect of pre-exposure on crack initiation lifetime of a directionally solidified Ni-base superalloy. Int J Fatigue. 2009;31(12):393.CrossRefGoogle Scholar
  9. [9]
    Gordon AP. Crack initiation modeling of a directionally-solidified nickel-base superalloy. Atlanta: Georgia Institute of Technology; 2006. 25.Google Scholar
  10. [10]
    Kupkovits RA, Neu RW. Thermomechanical fatigue of a directionally-solidified Ni-base superalloy: smooth and cylindrically-notched specimens. Int J Fatigue. 2010;32(8):1330.CrossRefGoogle Scholar
  11. [11]
    Findley KO, Evans JL, Saxena A. A critical assessment of fatigue crack nucleation and growth models for Ni-and Ni, Fe-based superalloys. Int Mater Rev. 2011;56(1):49.CrossRefGoogle Scholar
  12. [12]
    Kupkovits RA. Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC. Atlanta: Georgia Institute of Technology; 2009. 18.Google Scholar
  13. [13]
    Neu RW, Sehitoglu H. Thermomechanical fatigue, oxidation, and creep: part II. Life prediction. Metall Trans A. 1989;20(9):1769.CrossRefGoogle Scholar
  14. [14]
    Rezai-Aria F, Rémy L. An oxidation fatigue interaction damage model for thermal fatigue crack growth. Eng Fract Mech. 1989;34(2):283.CrossRefGoogle Scholar
  15. [15]
    Hou NX, Yu QM, Wen ZX, Yue ZF. Low cycle fatigue behavior of single crystal superalloy with temperature gradient. Eur J Mech A Solids. 2010;29(4):611.CrossRefGoogle Scholar
  16. [16]
    Yu J, Li JR, Zhao JQ, Han M, Shi ZX, Liu SZ, Yuan HL. Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760 °C and 785MPa. Mater Sci Eng A. 2013;560(1):47.CrossRefGoogle Scholar
  17. [17]
    Shi D, Liu J, Yang X, Qi H, Wang J. Experimental investigation on low cycle fatigue and creep–fatigue interaction of DZ125 in different dwell time at elevated temperatures. Mater Sci Eng A. 2010;528(1):233.CrossRefGoogle Scholar
  18. [18]
    Xia P, Yang L, Yu J, Sun X, Guan H, Hu Z. Influence of direction of notch on thermal fatigue property of a directionally solidified nickel base superalloy. Rare Met. 2011;30(1):472.CrossRefGoogle Scholar
  19. [19]
    Yuen A, Leverant GR. Fatigue crack propagation in two classes of directionally solidified eutectic alloys. Metall Trans A. 1976;7(9):1443.CrossRefGoogle Scholar
  20. [20]
    Lin YC, Chen XM, Wen DX, Chen MS. A physically-based constitutive model for a typical nickel-based superalloy. Comput Mater Sci. 2014;83(2):282.CrossRefGoogle Scholar
  21. [21]
    Alam MZ, Satyanarayana DVV, Chatterjee D, Sarkar R, Das DK. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy. Mater Sci Eng A. 2012;536(3):14.CrossRefGoogle Scholar
  22. [22]
    Jeong HW, Seo SM, Choi BG, Yoo YS, Ahn YK, Lee JH. Effect of long-term thermal exposures on microstructures and mechanical properties of directionally solidified CM247LC alloy. Met Mater Int. 2013;19(5):917.CrossRefGoogle Scholar
  23. [23]
    Alam MZ, Chatterjee D, Venkataraman B, Varma VK, Das DK. Effect of cyclic oxidation on the tensile behavior of directionally solidified CM-247LC Ni-based superalloy at 870 °C. Mater Sci Eng A. 2010;527(23):6211.CrossRefGoogle Scholar
  24. [24]
    Nicholls JR. Advances in coating design for high-performance gas turbines. MRS Bull. 2003;28(9):659.CrossRefGoogle Scholar
  25. [25]
    Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys. J Mater Sci. 1999;34(16):3957.CrossRefGoogle Scholar
  26. [26]
    Naumenko D, Shemet V, Singheiser L, Quadakkers WJ. Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide. J Mater Sci. 2009;44(7):1687.CrossRefGoogle Scholar
  27. [27]
    Xie Y, Yang Y, Wang M, Hou J. MCrAlY/TaC metal matrix composite coatings produced by electrospark deposition. Acta Metall Sin. 2013;26(2):173.CrossRefGoogle Scholar
  28. [28]
    Hejrani E, Sebold D, Nowak WJ, Mauer G, Naumenko D, Vassen R, Quadakkers WJ. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying. Surf Coat Technol. 2017;313(3):191.CrossRefGoogle Scholar
  29. [29]
    Kowalewski R, Mughrabi H. Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy. Mater Sci Eng A. 1998;247(1):295.CrossRefGoogle Scholar
  30. [30]
    Yang X, Li S, Qi H. Effect of high-temperature hot corrosion on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy. Int J Fatigue. 2015;70(1):106.CrossRefGoogle Scholar
  31. [31]
    Antolovich SD, Baur R, Liu S. A mechanistically based model for high temperature LCF of Ni base superalloys. In: Proceedings of the Fourth International Symposium on Superalloys, Pennsylvania; 1980. 605.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringBeihang UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Aero-Engine Structure and StrengthBeijingChina

Personalised recommendations