Rare Metals

, Volume 36, Issue 5, pp 307–320 | Cite as

Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries

  • Jian Wu
  • Woon-Ming Lau
  • Dong-Sheng GengEmail author


Despite carbonaceous materials are widely employed as commercial negative electrodes for lithium ion battery, an urge requirement for new electrode materials that meet the needs of high energy density, long cycle life, low cost and safety is still underway. A number of cobalt-based compounds (Co(OH)2, Co3O4, CoN, CoS, CoP, NiCo2O4, etc.) have been developed over the past years as promising anode materials for lithium ion batteries (LIBs) due to their high theoretical capacity, rich redox reaction and adequate cyclability. The LIBs performances of the cobalt-based compounds have been significantly improved in recent years, and it is anticipated that these materials will become a tangible reality for practical applications in the near future. However, the different types of cobalt-based compounds will result in diverse electrochemical performance. This review briefly analyzes recent progress in this field, especially highlights the synthetic approaches and the prepared nanostructures of the diverse cobalt-based compounds and their corresponding performances in LIBs, including the storage capacity, rate capability, cycling stability and so on.


Lithium ion batteries Anode materials Cobalt Conversion reaction 



This work was financially supported by the “1000 Talents Recruitment Program” of Chinese government, University of Science and Technology Beijing, and the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-070A1).


  1. [1]
    Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.CrossRefGoogle Scholar
  2. [2]
    Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458(7235):190.CrossRefGoogle Scholar
  3. [3]
    Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.CrossRefGoogle Scholar
  4. [4]
    Wu HB, Chen JS, Hng HH, Lou XW. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 2012;4(8):2526.CrossRefGoogle Scholar
  5. [5]
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366.CrossRefGoogle Scholar
  6. [6]
    Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. 2014;4(1):1.CrossRefGoogle Scholar
  7. [7]
    Zhao Y, Wang S, Zhao C, Xia D. Synthesis and electrochemical performance of LiCoPO4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries. Rare Met. 2009;28(2):117.CrossRefGoogle Scholar
  8. [8]
    Fergus JW. Recent developments in cathode materials for lithium ion batteries. J Power Sources. 2010;195(4):939.CrossRefGoogle Scholar
  9. [9]
    Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science. 1995;270(5236):590.CrossRefGoogle Scholar
  10. [10]
    Ji L, Lin Z, Alcoutlabi M, Zhang X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci. 2011;4(8):268.Google Scholar
  11. [11]
    Wang H, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H. Mn3O4−graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132(40):13978.CrossRefGoogle Scholar
  12. [12]
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.CrossRefGoogle Scholar
  13. [13]
    Cabana J, Monconduit L, Larcher D, Palacin MR. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater. 2010;22(35):E170.CrossRefGoogle Scholar
  14. [14]
    Croguennec L, Palacin MR. Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc. 2015;137(9):3140.CrossRefGoogle Scholar
  15. [15]
    Zou Y, Wang Y. Microwave-assisted synthesis of porous nickel oxide nanostructures as anode materials for lithium-ion batteries. Rare Met. 2011;30(1):59.CrossRefGoogle Scholar
  16. [16]
    Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2016;. doi: 10.1007/s12598-016-0753-0.Google Scholar
  17. [17]
    He YS, Bai DW, Yang X, Chen J, Liao XZ, Ma ZF. A Co(OH)2−graphene nanosheets composite as a high performance anode material for rechargeable lithium batteries. Electrochem Commun. 2010;12(4):570.CrossRefGoogle Scholar
  18. [18]
    Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy. 2015;12:528.CrossRefGoogle Scholar
  19. [19]
    Das B, Reddy MV, Rao GVS, Chowdari BVR. Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J Mater Chem. 2012;22(34):17505.CrossRefGoogle Scholar
  20. [20]
    Li J, Xiong S, Liu Y, Ju Z, Qian Y. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces. 2013;5(3):981.CrossRefGoogle Scholar
  21. [21]
    Xie J, Cao GS, Zhao XB. CoSb3-graphite composite anode material for lithium ion batteries. Rare Met. 2005;24(1):42.Google Scholar
  22. [22]
    Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q. Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C. 2012;116(12):7227.CrossRefGoogle Scholar
  23. [23]
    Palacin MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009;38(9):2565.CrossRefGoogle Scholar
  24. [24]
    Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano. 2010;4(6):3187.CrossRefGoogle Scholar
  25. [25]
    Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31.CrossRefGoogle Scholar
  26. [26]
    Xiong T, Chen JS, Lou XW, Zeng HC. Mesoporous Co3O4 and CoO@C Topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater. 2012;22(4):861.CrossRefGoogle Scholar
  27. [27]
    Wang Q, Jiao L, Han Y, Du H, Peng W, Huan Q, Song D, Si Y, Wang Y, Yuan H. CoS2 hollow spheres: fabrication and their application in lithium-ion batteries. J Phys Chem C. 2011;115(16):8300.CrossRefGoogle Scholar
  28. [28]
    Wang Z, Wang Z, Liu W, Xiao W, Lou XW. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ Sci. 2013;6(1):87.CrossRefGoogle Scholar
  29. [29]
    Wu J, Liu WW, Wu YX, Wei TC, Geng D, Mei J, Liu H, Lau WM, Liu LM. Three-dimensional hierarchical interwoven nitrogen-doped carbon nanotubes/CoxNi1−x-layered double hydroxides ultrathin nanosheets for high-performance supercapacitors. Electrochim Acta. 2016;203:21.CrossRefGoogle Scholar
  30. [30]
    Chen X, Cheng M, Chen D, Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces. 2016;8(6):3892.CrossRefGoogle Scholar
  31. [31]
    Su X, Xu Y, Liu J, Wang R. Controlled synthesis of Ni0.25Co0.75(OH)2 nanoplates and their electrochemical properties. Cryst Eng Commun. 2015;17(26):4859.CrossRefGoogle Scholar
  32. [32]
    Lu A, Zhang X, Chen Y, Xie Q, Qi Q, Ma Y, Peng DL. Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources. 2015;295:329.CrossRefGoogle Scholar
  33. [33]
    Xie J, Liu S, Cao G, Zhu T, Zhao X. Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy. 2013;2(1):49.CrossRefGoogle Scholar
  34. [34]
    Li Z, Xue H, Wang J, Tang Y, Lee CS, Yang S. Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium-ion batteries with excellent cyclic performance. ChemElectroChem. 2015;2(11):1682.CrossRefGoogle Scholar
  35. [35]
    Yang T, Zhang H, Luo Y, Mei L, Guo D, Li Q, Wang T. Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries. Electrochim Acta. 2015;158:327.CrossRefGoogle Scholar
  36. [36]
    Zou R, Zhang Z, Yuen MF, Sun M, Hu J, Lee CS, Zhang W. Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater. 2015;7(6):e195.CrossRefGoogle Scholar
  37. [37]
    Wu J, Guo P, Mi R, Liu X, Zhang H, Mei J, Liu H, Lau WM, Liu LM. Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J Mater Chem A. 2015;3(29):15331.CrossRefGoogle Scholar
  38. [38]
    Wang JG, Jin D, Zhou R, Shen C, Xie K, Wei B. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources. 2016;306:100.CrossRefGoogle Scholar
  39. [39]
    Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev. 2010;39(8):3115.CrossRefGoogle Scholar
  40. [40]
    Wu FD, Wang Y. Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. J Mater Chem. 2011;21(18):6636.CrossRefGoogle Scholar
  41. [41]
    Cheng F, Tao Z, Liang J, Chen J. Template-directed materials for rechargeable lithium-ion batteries. Chem Mater. 2008;20(3):667.CrossRefGoogle Scholar
  42. [42]
    Kaskhedikar NA, Maier J. Lithium storage in carbon nanostructures. Adv Mater. 2009;21(25–26):2664.CrossRefGoogle Scholar
  43. [43]
    Kang YM, Kim KT, Kim JH, Kim HS, Lee PS, Lee JY, Liu HK, Dou SX. Electrochemical properties of Co3O4, Ni–Co3O4 mixture and Ni–Co3O4 composite as anode materials for Li ion secondary batteries. J Power Sources. 2004;133(2):252.CrossRefGoogle Scholar
  44. [44]
    Kang YM, Kim KT, Lee KY, Lee SJ, Jung JH, Lee JY. Improvement of initial coulombic efficiency of Co3O4 by ballmilling using Ni as an additive. J Electrochem Soc. 2003;150(11):A1538.CrossRefGoogle Scholar
  45. [45]
    Huang XL, Zhao X, Wang ZL, Wang LM, Zhang XB. Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. J Mater Chem. 2012;22(9):3764.CrossRefGoogle Scholar
  46. [46]
    Huang XL, Chai J, Jiang T, Wei YJ, Chen G, Liu WQ, Han D, Niu L, Wang L, Zhang XB. Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. J Mater Chem. 2012;22(8):3404.CrossRefGoogle Scholar
  47. [47]
    Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM. The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc. 2002;149(3):A234.CrossRefGoogle Scholar
  48. [48]
    Chen J, Wu X, Selloni A. Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys Rev B. 2011;83(24):245204.CrossRefGoogle Scholar
  49. [49]
    Li WY, Xu LN, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater. 2005;15(5):851.CrossRefGoogle Scholar
  50. [50]
    Huang H, Zhu W, Tao X, Xia Y, Yu Z, Fang J, Gan Y, Zhang W. Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl Mater Interfaces. 2012;4(11):5974.CrossRefGoogle Scholar
  51. [51]
    Wang H, Mao N, Shi J, Wang Q, Yu W, Wang X. Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl Mater Interfaces. 2015;7(4):2882.CrossRefGoogle Scholar
  52. [52]
    Feng K, Park HW, Wang X, Lee DU, Chen Z. High performance porous anode based on template-free synthesis of Co3O4 nanowires for lithium-ion batteries. Electrochim Acta. 2014;139:145.CrossRefGoogle Scholar
  53. [53]
    Lee TI, Jegal JP, Park JH, Choi WJ, Lee JO, Kim KB, Myoung JM. Three-dimensional layer-by-layer anode structure based on Co3O4 nanoplates strongly tied by capillary-like multiwall carbon nanotubes for use in high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7(7):386.CrossRefGoogle Scholar
  54. [54]
    Shen L, Wang C. Hierarchical Co3O4 nanoparticles embedded in a carbon matrix for lithium-ion battery anode materials. Electrochim Acta. 2014;133:16.CrossRefGoogle Scholar
  55. [55]
    Huang XL, Wang RZ, Xu D, Wang ZL, Wang HG, Xu JJ, Wu Z, Liu QC, Zhang Y, Zhang XB. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater. 2013;23(35):4345.CrossRefGoogle Scholar
  56. [56]
    Wang X, Kim HM, Xiao Y, Sun YK. Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A. 2016;4(39):14915.CrossRefGoogle Scholar
  57. [57]
    Yang D, Zhu J, Rui X, Tan H, Cai R, Hoster HE, Yu DY, Hng HH, Yan Q. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl Mater Interfaces. 2013;5(3):1093.CrossRefGoogle Scholar
  58. [58]
    Cui YH, Xue MZ, Fu ZW, Wang XL, Liu XJ. Nanocrystalline CoP thin film as a new anode material for lithium ion battery. J Alloys and Compd. 2013;555:283.CrossRefGoogle Scholar
  59. [59]
    Alcántara R, Tirado JL, Jumas JC, Monconduit L, Olivier-Fourcade J. Electrochemical reaction of lithium with CoP3. J Power Sources. 2002;109(2):308.CrossRefGoogle Scholar
  60. [60]
    Zhang Z, Yang J, Nuli Y, Wang B, Xu J. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics. 2005;176(7–8):693.CrossRefGoogle Scholar
  61. [61]
    Lopez MC, Ortiz GF, Tirado JL. A functionalized Co2P negative electrode for batteries demanding high Li-potential reaction. J Electrochem Soc. 2012;159(8):A1253.CrossRefGoogle Scholar
  62. [62]
    Khatib R, Dalverny AL, Saubanère M, Gaberscek M, Doublet ML. Origin of the voltage hysteresis in the cop conversion material for Li-ion batteries. J Phys Chem C. 2013;117(2):837.CrossRefGoogle Scholar
  63. [63]
    Yang J, Zhang Y, Sun C, Liu H, Li L, Si W, Huang W, Yan Q, Dong X. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016;9(3):612.CrossRefGoogle Scholar
  64. [64]
    Chang K, Geng D, Li X, Yang J, Tang Y, Cai M, Li R, Sun X. Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater. 2013;3(7):839.CrossRefGoogle Scholar
  65. [65]
    Geng D, Ding N, Andy Hor TS, Liu Z, Sun X, Zong Y. Potential of metal-free “graphene alloy” as electrocatalysts for oxygen reduction reaction. J Mater Chem A. 2015;3(5):1795.CrossRefGoogle Scholar
  66. [66]
    Wang Y, Wu J, Tang Y, Lu X, Yang C, Qin M, Huang F, Li X, Zhang X. Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl Mater Interfaces. 2012;4(8):4246.CrossRefGoogle Scholar
  67. [67]
    Gu Y, Xu Y, Wang Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl Mater Interfaces. 2013;5(3):801.CrossRefGoogle Scholar
  68. [68]
    Su Q, Xie J, Zhang J, Zhong Y, Du G, Xu B. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Appl Mater Interfaces. 2014;6(4):3016.CrossRefGoogle Scholar
  69. [69]
    Wei L, Yi X, Changzheng W, Fei Z. Spherical CoS2 @ carbon core–shell nanoparticles: one-pot synthesis and Li storage property. Nanotechnology. 2008;19(7):075602.CrossRefGoogle Scholar
  70. [70]
    Zhou Y, Yan D, Xu H, Liu S, Yang J, Qian Y. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale. 2015;7(8):3520.CrossRefGoogle Scholar
  71. [71]
    Yan JM, Huang HZ, Zhang J, Liu ZJ, Yang Y. A study of novel anode material CoS2 for lithium ion battery. J Power Sources. 2005;146(1–2):264.CrossRefGoogle Scholar
  72. [72]
    Wang Q, Jiao L, Du H, Peng W, Han Y, Song D, Si Y, Wang Y, Yuan H. Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. J Mater Chem. 2011;21(2):327.CrossRefGoogle Scholar
  73. [73]
    Qiu B, Zhao X, Xia D. In situ synthesis of CoS2/RGO nanocomposites with enhanced electrode performance for lithium-ion batteries. J. Alloys Compd. 2013;579:372.CrossRefGoogle Scholar
  74. [74]
    Wang Q, Zou R, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y, Xia D, Xu Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small. 2015;11(21):2511.CrossRefGoogle Scholar
  75. [75]
    Gao MR, Yao WT, Yao HB, Yu SH. Synthesis of unique ultrathin lamellar mesostructured CoSe2—Amine (protonated) nanobelts in a binary solution. J Am Chem Soc. 2009;131(22):7486.CrossRefGoogle Scholar
  76. [76]
    Zhan JH, Yang XG, Li SD, Xie Y, Yu WC, Qian Y. Synthesis of nanocrystalline cobalt selenide in nonaqueous solvent. J Solid State Chem. 2000;152(2):537.CrossRefGoogle Scholar
  77. [77]
    Sato H, Nagasaki F, Kani Y, Senba S, Ueda Y, Kimura A, Taniguchi M. Electronic structure of CoSe2 studied by photoemission spectroscopy using synchrotron radiation. Solid State Commun. 2001;118(11):563.CrossRefGoogle Scholar
  78. [78]
    Zhang Y, Pan A, Ding L, Zhou Z, Wang Y, Niu S, Liang S, Cao G. Nitrogen-doped Yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl Mater Interfaces. 2017;9(4):3624.CrossRefGoogle Scholar
  79. [79]
    Zhou J, Wang Y, Zhang J, Chen T, Song H, Yang HY. Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries. Nanoscale. 2016;8(32):149.CrossRefGoogle Scholar
  80. [80]
    Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A. 2015;3(4):1364.CrossRefGoogle Scholar
  81. [81]
    Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK. The current move of lithium ion batteries towards the next phase. Adv Energy Mater. 2012;2(7):860.CrossRefGoogle Scholar
  82. [82]
    Reddy MV, Prithvi G, Loh KP, Chowdari BV. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces. 2014;6(1):680.CrossRefGoogle Scholar
  83. [83]
    Fu ZW, Wang Y, Yue XL, Zhao SL, Qin QZ. Electrochemical reactions of lithium with transition metal nitride electrodes. J Phys Chem B. 2004;108(7):2236.CrossRefGoogle Scholar
  84. [84]
    Fu ZW, Li CL, Liu WY, Ma J, Wang Y, Qin QZ. Electrochemical reaction of lithium with cobalt fluoride thin film electrode. J Electrochem Soc. 2005;152(2):E50.CrossRefGoogle Scholar
  85. [85]
    Wang X, Gu W, Lee JT, Nitta N, Benson J, Magasinski A, Schauer MW, Yushin G. Carbon nanotube-CoF2 multifunctional cathode for lithium ion batteries: effect of electrolyte on cycle stability. Small. 2015;11(38):5164.CrossRefGoogle Scholar
  86. [86]
    Wei TY, Chen CH, Chien HC, Lu SY, Hu CC. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater. 2010;22(3):347.CrossRefGoogle Scholar
  87. [87]
    Hou X, Wang X, Liu B, Wang Q, Luo T, Chen D, Shen G. Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale. 2014;6(15):8858.CrossRefGoogle Scholar
  88. [88]
    Wu J, Mi R, Li S, Guo P, Mei J, Liu H, Lau WM, Liu LM. Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors. RSC Adv. 2015;5(32):25304.CrossRefGoogle Scholar
  89. [89]
    Hu L, Qu B, Li C, Chen Y, Mei L, Lei D, Chen L, Li Q, Wang T. Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J Mater Chem A. 2013;1(18):5596.CrossRefGoogle Scholar
  90. [90]
    Ying W, Dawei S, Alison U, Jung-Ho A, Guoxiu W. Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology. 2012;23(5):055402.CrossRefGoogle Scholar
  91. [91]
    Zhou L, Zhao D, Lou XW. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater. 2012;24(6):745.CrossRefGoogle Scholar
  92. [92]
    Sharma Y, Sharma N, Rao GVS, Chowdari BVR. Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources. 2007;173(1):495.CrossRefGoogle Scholar
  93. [93]
    Xu X, Dong B, Ding S, Xiao C, Yu D. Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life. J Mater Chem A. 2014;2(32):13069.CrossRefGoogle Scholar
  94. [94]
    Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q. CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep. 2012;2:986.Google Scholar
  95. [95]
    Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X. Recent Developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater. 2016;6(8):1502175.CrossRefGoogle Scholar
  96. [96]
    Cao Y, Zhang L, Tao D, Huo D, Su K. Facile synthesis of CoSnO3/Graphene nanohybrid with superior lithium storage capability. Electrochim Acta. 2014;132:483.CrossRefGoogle Scholar
  97. [97]
    Yuvaraj S, Amaresh S, Lee YS, Selvan RK. Effect of carbon coating on the electrochemical properties of Co2SnO4 for negative electrodes in Li-ion batteries. RSC Adv. 2014;4(13):6407.CrossRefGoogle Scholar
  98. [98]
    Cherian CT, Reddy MV, Haur SC, Chowdari BV. Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl Mater Interfaces. 2013;5(3):918.CrossRefGoogle Scholar
  99. [99]
    Yang Y, Wang S, Jiang C, Lu Q, Tang Z, Wang X. Controlled synthesis of hollow Co–Mo mixed oxide nanostructures and their electrocatalytic and lithium storage properties. Chem Mater. 2016;28(7):2417.CrossRefGoogle Scholar
  100. [100]
    Yu H, Guan C, Rui X, Ouyang B, Yadian B, Huang Y, Zhang H, Hoster HE, Fan HJ, Yan Q. Hierarchically porous three-dimensional electrodes of CoMoO4 and ZnCo2O4 and their high anode performance for lithium ion batteries. Nanoscale. 2014;6(18):10556.CrossRefGoogle Scholar
  101. [101]
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale. 2013;5(19):8879.CrossRefGoogle Scholar
  102. [102]
    Wu X, Li S, Wang B, Liu J, Yu M. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries. Phys Chem Chem Phys. 2016;18(6):4505.CrossRefGoogle Scholar
  103. [103]
    Das B, Reddy MV, Chowdari BV. X-ray absorption spectroscopy and energy storage of Ni-doped cobalt nitride, (Ni0.33Co0.67)N, prepared by a simple synthesis route. Nanoscale. 2013;5(5):196.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations