Skip to main content

Advertisement

Log in

Double-activated porous carbons for high-performance supercapacitor electrodes

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The double-activated porous carbons (DAPCs) with unique bimodal pore structure were prepared by activating commercial microporous carbon (CMCs) twice through KOH (double activation) at high temperature. The as-prepared DAPCs show larger surface area (833 m2·g−1), and the pores are composed of micropores (size of ~1.8 nm) and mesopores (size of ~4.5 nm). Such special hierarchical porous structures integrate the dual advantages of micropore and mesopore, having not only the high energy storage of the micropores but also the high-rate performance of the mesopores for supercapacitors (SCs). As a result, the optimized DAPCs-3-1 exhibits a high specific capacitance of 277 F·g−1 at 1 A·g−1, enhanced rate performance of 197 F·g−1 at a high current density of 10 A·g−1, and excellent cycling stability with 94.2% capacity retention after 10,000 cycles in the 1 mol·L−1 Na2SO4 electrolyte. The facile double activation could be a promising method to prepare suitable porous carbons with exceptional electrochemical properties for SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar VB, Borenstein A, Markovsky B, Aurbach D, Gedanken A, Talianker M, Porat Z. Activated carbon modified with carbon nanodots as novel electrode material for supercapacitors. J Phys Chem C. 2016;120(25):13406.

    Article  Google Scholar 

  2. Faraji S, Ani FN. The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev. 2015;42:823.

    Article  Google Scholar 

  3. Chen Q, Hu Y, Hu CG, Cheng HH, Zhang ZP, Shao HB, Qu LT. Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors. Phys Chem Chem Phys. 2014;16(36):19307.

    Article  Google Scholar 

  4. Tian YH. The development of supercapacitor with porous carbon materials. J Power Sources. 2002;26(6):466.

    Google Scholar 

  5. Yoo EJ, Kim J, Hosono E. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8(8):2277.

    Article  Google Scholar 

  6. Yuan B, Zhou L, Guan DA. The develpoment of supercapacitor with carbon-bassed electrode materials. Mar Electr Eng. 2016;36(1):33.

    Google Scholar 

  7. Kota M, Yu X, Yeon SH, Cheong HW, Park HS. Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J Power Sources. 2016;303:372.

    Article  Google Scholar 

  8. Zhang L, DeArmond D, Alvarez NT, Zhao D, Wang T, Hou G, Malik R, Heineman WR, Shanov V. Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes. J Mater Chem A. 2016;4(9):1876.

    Article  Google Scholar 

  9. Lamberti A, Clerici F, Fontana M, Scaltrito LA. Highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv Energy Mater. 2016;6(10):1600050.

    Article  Google Scholar 

  10. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem. 2012;22(3):767.

    Article  Google Scholar 

  11. Qiu YC, Li G, Hou Y, Pan Z, Li HF, Li WF, Liu MN, Ye FM, Yang XW, Zhang YG. Vertically aligned carbon nanotubes on carbon nanofibers: a hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem Mater. 2015;27(4):1194.

    Article  Google Scholar 

  12. Park JW, Park SJ, Kwon OS, Lee C, Jang J, Jang J, Park JW, Park SJ, Lee C, Kwon OS. In situ synthesis of graphene/polyselenophene nanohybrid materials as highly flexible energy storage electrodes. Chem Mater. 2014;26(7):2354.

    Article  Google Scholar 

  13. Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev. 2002;102(11):4243.

    Article  Google Scholar 

  14. Moreno-Castilla C, Maldonado-Hódar FJ. Carbon aerogels for catalysis applications: an overview. Carbon. 2005;43(3):455.

    Article  Google Scholar 

  15. Nardecchia S, Carriazo D, Ferrer ML, Gutierrez MC, del Monte F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev. 2013;42(2):794.

    Article  Google Scholar 

  16. Chen Z, Wen J, Yan CZ, Rice L, Sohn H, Shen MQ, Cai M, Dunn B, Lu YF. High-performance supercapacitors based on hierarchically porous graphite particles. Adv Energy Mater. 2011;1(4):551.

    Article  Google Scholar 

  17. Mun Y, Jo C, Hyeon T, Lee J, Ha KS, Jun KW, Lee SH, Hong SW, Lee HI, Yoon S, Lee J. Simple synthesis of hierarchically structured partially graphitized carbon by emulsion/block-copolymer co-template method for high power supercapacitors. Carbon. 2013;64:391.

    Article  Google Scholar 

  18. Ma C, Song Y, Shi JL, Zhang DQ, Zhai XL, Zhong M, Guo QG, Liu L. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon. 2013;51:290.

    Article  Google Scholar 

  19. Lei Z, Christov N, Zhang LL, Zhao XS. Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J Mater Chem. 2011;21(7):2274.

    Article  Google Scholar 

  20. Dai L. Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res. 2013;46(1):12.

    Article  Google Scholar 

  21. Hu CG, Zhang YY, Bao G, Zhang YL, Liu ML, Wang ZL. Diameter-dependent voltammetric properties of carbon nanotubes. Chem Phys Lett. 2006;418(4):524.

    Article  Google Scholar 

  22. Kang DM, Liu QL, Gu JJ, Su YS, Zhang W, Zhang D. “Egg-Box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano. 2015;9(11):11225.

    Article  Google Scholar 

  23. Wang DW, Li F, Liu M, Lu GQ, Cheng HM. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem. 2007;120(2):379.

    Article  Google Scholar 

  24. Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc. 2012;134(48):19532.

    Article  Google Scholar 

  25. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science. 2006;313(5794):1760.

    Article  Google Scholar 

  26. Wei XJ, Jiang XQ, Wei JS, Gao SY. Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem Mater. 2016;28(2):445.

    Article  Google Scholar 

  27. Li MC, Wang WX, Yang MY, Lv FC, Cao LJ, Tang YG, Sun R, Lu ZG. Large-scale fabrication of porous carbon decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Adv. 2015;5(10):7356.

    Article  Google Scholar 

  28. Tao PP, Hu J, Wang WX, Wang S, Li MC, Zhong H, Tang YG, Lu ZG. Porous graphitic carbon prepared from the catalytic carbonization of Mo-containing resin for supercapacitors. RSC Adv. 2014;4(26):13518.

    Article  Google Scholar 

  29. Hu J, Tao PP, Wang S, Liu Y, Tang YG, Zhong H, Lu ZG. Preparation of highly graphitized porous carbon from resins after the treatment of Cr6+-containing wastewater for supercapacitors. J Mater Chem A. 2013;1(22):6558.

    Article  Google Scholar 

  30. Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amorós D, Linares-Solano A. About reactions occurring during chemical activation with hydroxides. Carbon. 2004;42(7):1371.

    Article  Google Scholar 

  31. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH. Carbon. 2003;41(2):267.

    Article  Google Scholar 

  32. Mckee DW. Gasification of graphite in carbon dioxide and water vapour—the catalytic effects of alkali metal salts. Carbon. 1982;20(1):59.

    Article  Google Scholar 

  33. Jain A, Aravindan V, Jayaraman S, Kumar PS, Balasubramanian R, Ramakrishna S, Madhavi S, Srinivasan MP. Activated carbons derived from coconut shells as high energy density cathode material for Li–ion capacitors. Sci Rep. 2013;3:3002.

    Article  Google Scholar 

  34. Carrot PJM, Roberts RA, Sing KSW. Adsorption of nitrogen by porous and non-porous carbons. Carbon. 1987;25(1):59.

    Article  Google Scholar 

  35. Sing KS, Everett DH, Haul AW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl Chem. 1985;57(4):17.

    Article  Google Scholar 

  36. Sing KSW, Everett DH, Haul AW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603.

    Article  Google Scholar 

  37. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845.

    Article  Google Scholar 

  38. Wang Q, Wen ZH, Li JH. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2–B nanowire anode. Adv Funct Mater. 2006;16(16):2141.

    Article  Google Scholar 

  39. Qu GX, Cheng JL, Li XD, Yuan DM, Chen PN, Chen XL, Wang B, Peng HS. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater. 2016;28(19):3646.

    Article  Google Scholar 

  40. Choi BG, Hong J, Hong WH, Hammond PT, Park H. Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano. 2011;5(9):7205.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51472110), Shandong Provincial Natural Science Foundation (No. ZR2016EMB05), University of Jinan Science Foundation (No. XKY1630), and a Research Project from Ministry of Education, China (No. 213021A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Qiang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yang, SH., Li, SS. et al. Double-activated porous carbons for high-performance supercapacitor electrodes. Rare Met. 36, 449–456 (2017). https://doi.org/10.1007/s12598-017-0896-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0896-7

Keywords

Navigation