Rare Metals

, Volume 36, Issue 5, pp 397–402 | Cite as

Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3 : towards better electrochemical performances

  • Yu Li
  • Ying Bai
  • Zhi Yang
  • Zhao-Hua Wang
  • Shi Chen
  • Feng Wu
  • Chuan WuEmail author


Doping modification of electrode materials is a sought-after strategy to improve their electrochemical performance in the secondary batteries field. Herein, polyanion (BO3)3−-doped Li3V2(PO4)3 cathode materials were successfully synthesized via a wet coordination method. The effects of (BO3)3− doping content on crystal structure, morphology and electrochemical performance were explored by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). All the as-prepared samples have the same monoclinic structure; among them, Li3V2(PO4)2.75(BO3)0.15 sample has relatively uniform and optimized particle size. In addition, this sample has the highest discharge capacity and the best cycling stability, with an initial discharge capacity of 120.4 mAh·g−1, and after 30 cycles at a rate of 0.1C, the discharge capacity still remains 119.3 mAh·g−1. It is confirmed that moderate polyanion (BO3)3− doping can rearrange the electronic structure of the bulk Li3V2(PO4)3, lower the charge transfer resistance and further improve the electrochemical behaviors.


Lithium-ion batteries Cathode materials Li3V2(PO4)3 Polyanion doping (BO3)3− 



This work was financially supported by the National Key Research and Development Program of China (No.2016YFB0100500) and the Beijing Co-construction Project (No. 20150939014).


  1. [1]
    Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.CrossRefGoogle Scholar
  2. [2]
    Li Y, Bai Y, Bi XX, Qian J, Ma L, Tian J, Wu C, Wu F, Lu J, Amine K. An effectively activated hierarchical nano-/microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries. Chem Sus Chem. 2016;9(7):728.CrossRefGoogle Scholar
  3. [3]
    Yun FL, Tang L, Li WC, Jin WR, Pang J, Lu SG. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met. 2016;35(4):309.CrossRefGoogle Scholar
  4. [4]
    Li Y, Bai Y, Wu C, Qian J, Chen GH, Liu L, Wang H, Zhou XZ, Wu F. Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J Mater Chem A. 2016;4(16):5942.CrossRefGoogle Scholar
  5. [5]
    Ren L, Li XE, Wang FF, Han Y. Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant. Rare Met. 2015;34(10):731.CrossRefGoogle Scholar
  6. [6]
    Wu F, Wang L, Wu C, Bai Y, Wang F. Study on Li1+xV3O8 synthesized by microwave sol-gel route. Mater Chem Phys. 2009;115(2):707.CrossRefGoogle Scholar
  7. [7]
    Wu F, Wang L, Wu C, Bai Y. Structural characterization and electrochemical performance of lithium trivanadate synthesized by microwave sol-gel method. Electrochim Acta. 2009;54(20):4613.CrossRefGoogle Scholar
  8. [8]
    Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013;135(4):1167.CrossRefGoogle Scholar
  9. [9]
    Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou YF. Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces. 2016;8(29):18832.CrossRefGoogle Scholar
  10. [10]
    Membreño N, Park K, Goodenough JB, Stevenson KJ. Electrode/electrolyte interface of composite α-Li3V2(PO4)3 cathodes in a nonaqueous electrolyte for lithium ion batteries and the role of the carbon additive. Chem Mater. 2015;27(9):3332.CrossRefGoogle Scholar
  11. [11]
    Yin SC, Grondey H, Strobel P, Anne M, Nazar LF. Electrochemical property: structure relationships in monoclinic Li3-yV2(PO4)3. J Am Chem Soc. 2003;125(34):10402.CrossRefGoogle Scholar
  12. [12]
    Rui X, Yan Q, Skyllas-Kazacos M, Lim TM. Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources. 2014;258(21):19.CrossRefGoogle Scholar
  13. [13]
    Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci. 2011;4(9):3223.CrossRefGoogle Scholar
  14. [14]
    Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1(2):123.CrossRefGoogle Scholar
  15. [15]
    Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem Mater. 2000;12(11):3240.CrossRefGoogle Scholar
  16. [16]
    Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid State Lett. 2002;5(7):A149.CrossRefGoogle Scholar
  17. [17]
    Zhong SK, Wang Y, Wu L, Liu JQ. Synthesis and electrochemical properties of Ti-doped Li3V2(PO4)3/C cathode materials. Rare Met. 2014;34(8):586.CrossRefGoogle Scholar
  18. [18]
    Duan W, Hu Z, Zhang K, Cheng F, Tao Z, Chen J. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale. 2013;5(14):6485.CrossRefGoogle Scholar
  19. [19]
    Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta. 2009;54(24):5844.CrossRefGoogle Scholar
  20. [20]
    Ren M, Zhou Z, Li Y, Gao XP, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Power Sources. 2006;162(2):1357.CrossRefGoogle Scholar
  21. [21]
    Dai C, Chen Z, Jin H, Hu X. Synthesis and performance of Li3(V1−xMgx)2(PO4)3 cathode materials. J Power Sources. 2010;195(17):5775.CrossRefGoogle Scholar
  22. [22]
    Son JN, Kim GJ, Kim MC, Kim SH, Aravindan V, Lee YG, Lee YS. Carbon coated NASICON type Li3V2-xMx(PO4)3 (M = Mn, Fe and Al) materials with enhanced cyclability for Li-ion batteries. J Electrochem Soc. 2012;160(1):A87.CrossRefGoogle Scholar
  23. [23]
    Kuang Q, Zhao Y. Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries. J Power Sources. 2012;216(11):33.CrossRefGoogle Scholar
  24. [24]
    Kim J, Yoo JK, Jung YS, Kang K. Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv Energy Mater. 2013;3(8):1004.CrossRefGoogle Scholar
  25. [25]
    Wang S, Zhang Z, Jiang Z, Deb A, Yang L, Hirano SI. Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources. 2014;253(253):294.CrossRefGoogle Scholar
  26. [26]
    Li D, Tian M, Xie R, Li Q, Fan X, Gou L, Zhao P, Ma SL, Shi YX, Yong HTH. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale. 2014;6(6):3302.CrossRefGoogle Scholar
  27. [27]
    Zhong S, Liu L, Liu J, Wang J, Yang J. High-rate characteristic of F-substitution cathode materials for Li–ion batteries. Solid State Commun. 2009;149(39–40):1679.Google Scholar
  28. [28]
    Yan J, Yuan W, Tang ZY, Xie H, Mao WF, Ma L. Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries. J Power Sources. 2012;209(7):251.CrossRefGoogle Scholar
  29. [29]
    Wang L, Li X, Jiang X, Pan F, Wu F. Wet coordination method to prepare carbon-coated Li3V2(PO4)3 cathode material for lithium ion batteries. Solid State Sci. 2010;12(7):1248.CrossRefGoogle Scholar
  30. [30]
    Wu F, Wang F, Wu C, Bai Y. Rate performance of Li3V2(PO4)3/C cathode material and its Li+ ion intercalation behavior. J Alloys Compd. 2012;513(3):236.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Collaborative Innovation Center of Electric Vehicles in BeijingBeijingChina

Personalised recommendations