Advertisement

Rare Metals

, Volume 37, Issue 8, pp 675–681 | Cite as

Microstructure and properties of MOCVD-derived Gd x Y1−x Ba2Cu3O7−δ films with composition fluctuations

  • Yu-Xi Zhang
  • Fei Zhang
  • Rui-Peng Zhao
  • Yan Xue
  • Hui Wang
  • Qiu-Liang Wang
  • Jie XiongEmail author
  • Bo-Wan Tao
Article
  • 147 Downloads

Abstract

The effects of Gd content on crystalline orientation, microstructure and superconductivity of Gd x Y1−x Ba2Cu3O7−δ (GdYBCO) films were systematically investigated. By varying the Gd content in the liquid precursor without changing the total amount of rare earth elements, series of GdYBCO films with x values of 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0 were fabricated by metal organic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis revealed that Gd introducing could restrain the formation of CuYO2 phase, but induce a-axis growth of GdYBCO film. The increase of x from 0 to 0.5 leads to enhancing critical current density at self-field and 77 K (J csf) from 1.8 to 2.8 MA·cm−2, which benefits from the decrease in CuYO2 impurities and improvement of in-plane texture from 5.0° to 4.3°. However, raising x from 0.5 to 1.0 gives rise to abundant a-axis growth of film and degradation of in-plane texture from 4.3° to 5.4°, consequently resulting in the decrease of J csf from 2.8 to 0.8 MA·cm−2. Even though J csf has not varied monotonically, the critical transition temperature of GdYBCO films linearly increases from 90.75 to 92.25 K and the in-field performance at magnetic field (B) of 0–1.1 T and 77 K as well as B parallel to film normal is also superior with Gd content increasing.

Keywords

Gd content GdYBCO MOCVD Microstructure Flux pinning 

Notes

Acknowledgements

This study was financially supported by the National Science Foundation of China (No. 91421110), the National High Technology Research and Development Program of China (No. 2014AA032702), the National Basic Research Program of China (No. 2015CB358600), the Sichuan Youth Science and Technology Innovation Research Team Funding (No. 2011JTD0006) and the Sichuan Provincial Fund for Distinguished Young Academic and Technology Leaders (No. 2014JQ0011).

References

  1. [1]
    Foltyn SR, Civale L, MacManus-Driscoll JL, Jia QX, Maiorov B, Wang H, Maley M. Materials science challenges for high-temperature superconducting wire. Nat Mater. 2007;6(9):631.CrossRefGoogle Scholar
  2. [2]
    Hylton TL, Beasley MR. Flux-pinning mechanisms in thin films of YBa2Cu3O7−δ. Phys Rev B. 1990;41(16):11669.CrossRefGoogle Scholar
  3. [3]
    Blatter G, Feigelman MV, Geshkenbein VB, Larkin AI, Vinokur VM. Vortices in high temperature superconductors. Rev Mod Phys. 1994;66(4):1125.CrossRefGoogle Scholar
  4. [4]
    Brandt EH. The flux line lattice in superconductors. Rep Prog Phys. 1995;58(11):1465.CrossRefGoogle Scholar
  5. [5]
    Dam B, Huijbregtse JM, Klaassen FC, Van der Geest RCF, Doornbos G, Rector JH, Testa AM, Freisem S, Martinez JC, Stäuble-Pümpin B, Griessen R. Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature. 1999;399(6735):439.CrossRefGoogle Scholar
  6. [6]
    Huijbregtse JM, Klaassen FC, Szepielow A, Rector JH, Dam B, Griessen R, Kooi BJ, de Th M, Hosson J. Vortex pinning by natural defects in thin films of YBa2Cu3O7−δ. Supercond Sci Technol. 2002;15(3):395.CrossRefGoogle Scholar
  7. [7]
    Lu P, Li YQ, Zhao J, Chern CS, Gallois B, Norris P, Kear B, Cosandey F. High density, ultrafine precipitates in YBa2Cu3O7−x thin films prepared by plasma-enhanced metalorganic chemical vapordeposition. Appl Phys Lett. 1992;60(10):1265.CrossRefGoogle Scholar
  8. [8]
    Wang H, Serquis A, Maiorov B, Civale L, Jia QX, Arendt PN, Foltyn SR, MacManus-Driscoll JL, Zhang X. Microstructureand transport properties of Y-rich YBa2Cu3O7−x thin films. J Appl Phys. 2006;100(5):053904.CrossRefGoogle Scholar
  9. [9]
    Holesinger TG, Maiorov B, Ugurlu O, Civale L, Chen Y, Xiong X, Xie Y, Selvamanickam V. Microstructural and superconducting properties of high current metal–organic chemical vapor deposition YBa2Cu3O7−δ coated conductor wires. Supercond Sci Technol. 2009;22(4):045025.CrossRefGoogle Scholar
  10. [10]
    Chen YM, Selvamanickam V, Zhang YF, Zuev Y, Cantoni C, Specht E, Paranthaman MP, Aytug T, Goyal A, Lee D. Enhanced flux pinning by BaZrO3 and (Gd, Y)2O3 nano-structures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl Phys Lett. 2009;94(6):062513.CrossRefGoogle Scholar
  11. [11]
    Macmanus-Driscoll JL, Foltyn SR, Jia QX, Wang H, Serquis A, Civale L, Maiorov B, Hawley ME, Maley MP, Peterson DE. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x+BaZrO3. Nat Mater. 2004;3(7):439.CrossRefGoogle Scholar
  12. [12]
    Aytug T, Paranthaman M, Specht ED, Zhang Y, Kim K, Zuev YL, Cantoni C, Goyal A, Christem DK, Maroni VA. Enhanced flux pinning in MOCVD-YBCO films through Zr additions: systematic feasibility studies. Supercond Sci Technol. 2010;23(1):014005.CrossRefGoogle Scholar
  13. [13]
    Jha AK, Khare N, Pinto R. Comparison of flux pinning mechanism in laser ablated YBCO and YBCO:BaZrO3 nanocomposite thin films. J Supercond Nov Magn. 2012;25(2):377.CrossRefGoogle Scholar
  14. [14]
    Selvamanickam V, Chen Y, Shi T, Liu Y, Khatri ND, Liu J, Yao Y, Xiong X, Lei C, Soloveichilk S. Enhanced critical currents in (Gd, Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition. Supercond Sci Technol. 2013;26(3):035006.CrossRefGoogle Scholar
  15. [15]
    Xu AX, Khatri N, Liu YH, Majkic G, Galstyan E, Selvamanickam V, Chen YM, Lei CH, Abraimov D, Hu XB, Jaroszynski J, Larbalestier D. Broad temperature pinning study of 15 mol.% Zr-added (Gd, Y)–Ba–Cu–O MOCVD coated conductors. IEEE Trans Appl Supercond. 2015;25(3):6603105.Google Scholar
  16. [16]
    Varanasi CV, Burke J, Wang H, Lee JH, Barnes PN. Thick YBa2Cu3O7−x+BaSnO3 films with enhanced critical current density at high magnetic fields. Appl Phys Lett. 2008;93(9):092501.CrossRefGoogle Scholar
  17. [17]
    Tobita H, Notoh K, Higashikawa K, Inoue M, Kiss T, Kato T, Hirayama T, Yoshizumi M, Izumi T, Shiohara Y. Fabrication of BaHfO3 doped GdBa2Cu3O7−δ coated conductors with the high I c of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K). Supercond Sci Technol. 2012;25(6):062002.CrossRefGoogle Scholar
  18. [18]
    Hanisch J, Cai C, Huhne R, Schultz L, Holzapfel B. Formation of nanosized BaIrO3 precipitates and their contribution to flux pinning in Ir-doped YBa2Cu3O7−δ quasi-multilayers. Appl Phys Lett. 2005;86(12):122508.CrossRefGoogle Scholar
  19. [19]
    Harrington SA, Durrell JH, Maiorov B, Wang H, Wimbush SC, Kursumovic A, Lee JH, MacManus-Driscoll JK. Self-assembled, rare earth tantalate pyrochlore nanoparticles for superior flux pinning in YBa2Cu3O7−δ films. Supercond Sci Technol. 2009;22(2):022001.CrossRefGoogle Scholar
  20. [20]
    Wee SH, Goyal A, Specht ED, Cantoni C, Zuev YL, Selvamanickam V, Cook S. Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocolumns within YBa2Cu3O7−δ films. Phys Rev B. 2010;81(14):140503.CrossRefGoogle Scholar
  21. [21]
    Feldmann DM, Holesinger TG, Maiorov B, Foltyn SR, Coulter JY, Apodaca I. Improved flux pinning in YBa2Cu3O7 with nanorods of the double perovskite Ba2YNbO6. Supercond Sci Technol. 2010;23(9):095004.CrossRefGoogle Scholar
  22. [22]
    Emergo RLS, Wu JZ, Haugan TJ, Barnes PN. Tuning porosity of vicinal films by insertion of nanoparticles. Appl Phys Lett. 2005;87(23):232503.CrossRefGoogle Scholar
  23. [23]
    Haugan T, Barnes PN, Wheeler R, Meisenkothen F, Sumption M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature. 2004;430(7002):867.CrossRefGoogle Scholar
  24. [24]
    Takahashi K, Yamada Y, Konishi M, Watanabe T, Ibi A, Muroga T, Miyata S, Shiohara Y, Kato T, Hirayama T. Magnetic field dependence of J c for Gd-123 coated conductor on PLD-CeO2 capped IBAD-GZO substrate tapes. Supercond Sci Technol. 2005;18(8):1118.CrossRefGoogle Scholar
  25. [25]
    Selvamanickam V, Chen Y, Zhang Y, Guevara A, Shi T, Yao Y, Majkic G, Lei C, Galtsyan E, Miller DJ. Effect of rare-earth composition on microstructure and pinning properties of Zr-doped (Gd, Y)Ba2Cu3Ox superconducting tapes. Supercond Sci Technol. 2012;25(4):045012.CrossRefGoogle Scholar
  26. [26]
    Xiong J, Xue Y, Xia YD, Zhang F, Zhang YX, Li LH, Zhao XH, Tao BW. Fabrication of long-length ion beam-assisted deposited MgO templates for YBCO-coated conductors. Rare Met. 2013;32(6):574.CrossRefGoogle Scholar
  27. [27]
    Yang C, He YY, Chu JW, Xue Y, Zhang F, Wang H, Tao BW, Xiong J. Tailoring surface roughness of LaMnO3 buffer layers for YBCO-coated conductors. Rare Met. 2015;34(12):859.CrossRefGoogle Scholar
  28. [28]
    Zhang F, Xiong J, Zhao RP, Xue Y, Wang H, Wang QL, He YY, Zhang P, Tao BW. Temperature-modulated growth of MOCVD-derived YBa2Cu3O7−x Films on IBAD-MgO templates. J Supercond Nov Magn. 2015;28(9):2697.CrossRefGoogle Scholar
  29. [29]
    Prado F, Caneiro A, Serquis A. High temperature thermodynamic properties, orthorhombic/tetragonal transition and phase stability of GdBa2Cu3Oy and related R123 compounds. Phys C. 1998;295(3–4):235.CrossRefGoogle Scholar
  30. [30]
    Shi DQ, Ko RK, Song KJ, Chung JK, Choi SJ, Park YM, Shin KC, Yoo SI, Park C. Effects of deposition rate and thickness on the properties of YBCO films deposited by pulsed laser deposition. Supercond Sci Technol. 2004;17(2):S42.CrossRefGoogle Scholar
  31. [31]
    Augieri A, Galluzzi V, Celentano G, Angrisani AA, Mancini A, Rufoloni A, Vannozzi A, Silva E, Pompeo N, Petrisor T, Ciontea L, Gambardella U, Rubanov S. Transport property improvement by means of BZO inclusions in PLD grown YBCO thin films. IEEE Trans Appl Supercond. 2009;19(3):3399.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Applied Research Laboratory of Superconduction and New Material, Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations