Skip to main content
Log in

Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, mesoporous silica/iron oxide nanocomposite (MCM-Fe2O3) was synthesized via hydrothermal technique. The chemical synthesis of MCM-Fe2O3 nanocomposite was achieved at 18 h. The effect of concentration of tetraethylorthosilicate (TEOS) on nanocomposites properties was studied during synthesis process. For this purpose, 0.5, 1.5, 2.5, 3.5, and 4.5 ml tetraethylorthosilicate (TEOS) were selected, respectively. The textural properties and microstructure of the nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), N2 adsorption–desorption, and vibrating sample magnetometer (VSM) analysis. Results show that the nanocomposite with tetraethylorthosilicate (TEOS)/cetyltrimethylammonium bromide (CTAB) ratio of 5 exhibits large surface areas (461.19 m2·g−1). Furthermore, this nanocomposite shows superparamagnetic behavior under external magnetic field compared to other samples. Moreover, results of removal of metal ions indicate that adsorption of Ni(II), Cd(II), Cr(III), Zn(II), and Pb(II) ions on the surface of adsorbent (nanocomposite) increases with the increase in solution pH, contact time, and adsorbent dosage. Furthermore, the maximum removal rates of heavy metals ions reach 53.0 %, 79.0 %, 61.0 %, 89.0 %, and 99.5 % at pH of 5, time of 50 min, and the weight of adsorbent of 0.16 with 2.5 ml TEOS, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Morales MA, Mascarenhas AJS, Gomes AMS, Leite CAP, Andrade HMC, De Castilho CMC, Galembeck F. Synthesis and characterization of magnetic mesoporous particles. J Colloid Interface Sci. 2010;342(2):269.

    Article  Google Scholar 

  2. Caparros C, Benelmekki M, Martins PM, Xuriguera E, Silva CJR, Martinez LIM, Lanceros-Mendez S. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification. Mater Chem Phys. 2012;135(2–3):510.

    Article  Google Scholar 

  3. Parida KM, Dash SK. Adsorption of Cu2+ on spherical Fe-MCM-41 and its application for oxidation of Adamantane. J Hazard Mater. 2010;178(1–3):642.

    Article  Google Scholar 

  4. Anbia M, Ghassemian Z. Removal of Cd(II) and Cu(II) from aqueous solutions using mesoporous silicate containing zirconium and iron. Chem Eng Res Des. 2010;89(12):2770.

    Article  Google Scholar 

  5. Wang P, Lo IMC. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res. 2009;43(15):3727.

    Article  Google Scholar 

  6. Kim K, Lee J, Um W, Kim J, Joo J, Lee JH, Kwak JH, Kim JH, Lee CH, Lee H, Addleman SH, Hyeon T, Gui MB. Magnetic mesoporous materials for removal of environmental wastes. J Hazard Mater. 2011;193(3):1140.

    Article  Google Scholar 

  7. Wang J, Zheng SH, Shao Y, Liu J, Xu ZH, Zhu D. Amino-Functionalized Fe3O4/SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010;349(1):293.

    Article  Google Scholar 

  8. Li G, Zhao Z, Liu J, Jiang G. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J Hazard Mater. 2011;277(1):277.

    Google Scholar 

  9. Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, Du B, Li H. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanosorbents. Chem Eng J. 2012;184(1):132.

    Article  Google Scholar 

  10. Chen X, Lam KF, Yeung KL. Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents. Chem Eng J. 2011;172(2–3):728.

    Article  Google Scholar 

  11. Ursachi I, Stancu A, Vasile A. Magnetic α-Fe2O3/MCM-41 nanocomposites: preparation, characterization, and catalytic activity for methylene blue degradation. J Colloid Interface Sci. 2012;377(1):184.

    Article  Google Scholar 

  12. Xia M, Chen CH, Long M, Cai W, Zhou B. Magnetically separable mesoporous silica nanocomposite and its application in fenton catalysis. Microporous Mesoporous Mater. 2011;145(1–3):217.

    Article  Google Scholar 

  13. Guo SH, Li D, Zhang L, Li J, Wang E. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials. 2009;30(10):1881.

    Article  Google Scholar 

  14. Sen T, Bruce IJ. Mesoporous silica-magnetite nanocomposites: fabrication, characterisation and applications in biosciences. Microporous Mesoporous Mater. 2009;120(3):246.

    Article  Google Scholar 

  15. Chen F, Shi R, Xue Y, Chen L, Wan QH. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. Magn Magn Mater. 2010;322(16):2439.

    Article  Google Scholar 

  16. Wang CH, Ao Y, Wang P, Qian J, Hou J, Zhang S. A Simple method for preparation of superparamagnetic porous silica. J Alloys Compd. 2010;493(1–2):410.

    Article  Google Scholar 

  17. Cornel RM, Schwertmann U. The Iron Oxides. Structure, Properties, Reactions and Uses. Weinheim: VCH Publishers; 1996. 573.

    Google Scholar 

  18. Kong A, Wang H, Li J, Shan YK. Prepration of super paramagnetic crystalline mesoporous γ-Fe2O3 with high surface. Mater Lett. 2008;62(6–7):943.

    Article  Google Scholar 

  19. Wagner AC, Martin W, Ulf S. Iron and copper immobilised on mesoporous MCM-41 molecular sieves as catalysts for the oxidation of cyclohexane. Orig J Mol Catal A Chem. 1999;144(1):91.

    Article  Google Scholar 

  20. Bengoa JF, Cagnoli MV, Gallegos NG, Alvarez AM, Mogni LV, Moreno MS, Marchetti SG. Iron oxide nanoparticles inside the MCM-41 channels: study of the structural stability of the support. Microporous Mesoporous Mater. 2005;84(1–3):153.

    Article  Google Scholar 

  21. Mitra A, Vazquez-Vazquez C, Lopez-Quintela MA, Paul BK, Bhaumik A. Soft-templating approach for the synthesis of high surface area and superparamagnetic mesoporous iron oxide materials. Microporous Mesoporous Mater. 2010;131(1–3):373.

    Article  Google Scholar 

  22. Darezereshki E, Bakhtiari F, Alizadeh M, Yakylabad AB, Ranjbar M. Direct thermal decomposition synthesis and characterization of hematite (α-Fe2O3) nanoparticles. Mater Sci Semicond Process. 2012;15(1):91.

    Article  Google Scholar 

  23. Darezereshki E. Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater Lett. 2010;64(13):1471.

    Article  Google Scholar 

  24. Darezereshki E. One-step synthesis of hematite nanoparticles by direct thermal decomposition of maghemite. Mater Lett. 2011;65(4):642.

    Article  Google Scholar 

  25. Khosroshahi ME, Ghazanfari L. Synthesis and functionalization of SiO2 coated Fe3O4 nanoparticles with amine groups based on self-assembly. Mater Sci Eng, C. 2012;32(5):1043.

    Article  Google Scholar 

  26. Ngomsik AF, Bee A, Draye M, Cote G, Cabuil V. Magnetic nano- and microparticles for metal removal and environmental applications: a review. C R Chim. 2005;8(6–7):963.

    Article  Google Scholar 

  27. Crane RA, Scott TB. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211(212):317.

    Google Scholar 

  28. Sidhaarth KRA. Comparative studies of removal of lead and zinc from industrial wastewater and aqueous solution by iron oxide nanoparticle: performance and mechanisms. Eur J Sci Res. 2012;70(2):169.

    Google Scholar 

  29. Al-Saad KA, Amr MA, Hadi DT, Arar RS, Al-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC. Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water. Arab J Nucl Sci Appl. 2012;45(2):335.

    Google Scholar 

  30. Slowing II, Escoto JLV, Wu CHW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(1):1278.

    Article  Google Scholar 

  31. Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterial. 2008;29(30):4045.

    Article  Google Scholar 

  32. Carrillo AI, Linares N, Serrano E, Martinez JG. Well-ordered mesoporous interconnected silica spheres prepared using extremely low surfactant concentrations. Mater Chem Phys. 2011;1299(1–2):261.

    Article  Google Scholar 

  33. Du E, Yu SH, Zuo L, Zhang J, Huang X, Wang Y. Pb(II) sorption on molecular sieve analogues of MCM-41 synthesized from kaolinite and montmorillonite. Appl Clay Sci. 2011;51(1):94.

    Article  Google Scholar 

  34. Quintanilla DP, Sánchez A, Del Hierro I, Fajardo M, Sierra I. Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole. J Colloid Interface Sci. 2007;313(2):551.

    Article  Google Scholar 

  35. Heidari A, Younesi H, Mehraban Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem Eng J. 2009;153(1–3):70.

    Article  Google Scholar 

  36. Surowiec Z, Wiertel M, Budzynski M, Sarzynski J, Goworek J. Magnetite nanowires in MCM-41 type mesoporous silica templates. J Non Cryst Solids. 2008;354(35–39):4271.

    Article  Google Scholar 

  37. Surowiec Z, Bierska-Piech B, Wiertel M, Budzynski M, Goworek J. Magnetic nanoparticles in MCM-41 type mesoporous silica. Acta Phys Pol, A. 2008;114(6):1605.

    Article  Google Scholar 

  38. Yang H, Deng Y, Du CH. Synthesis and optical properties of mesoporous MCM-41 containing doped TiO2 nanoparticles. Colloids Surf A Physicochem Eng Asp. 2009;339(1–3):111.

    Article  Google Scholar 

  39. Sheng X, Gao J, Han L, Jia Y, Sheng W. One-pot synthesis of tryptophols with mesoporous MCM-41 silica catalyst functionalized with sulfonic acid groups. Microporous Mesoporous Mater. 2011;143(1):73.

    Article  Google Scholar 

  40. Yousefpour M, Taherian Z. The effects of ageing time on the microstructure and properties of mesoporous silica-hydroxyapatite nanocomposite. Superlattices Microstruct. 2013;54:78.

    Article  Google Scholar 

  41. Naghiloo M, Yousefpour M, Nourbakhsh MS, Taherian Z. Functionalization of SBA-16 silica particles for ibuprofen delivery. J Sol-Gel Sci Technol. 2015;74(2):537.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Semnan University Foundation of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardali Yousefpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantari, S., Yousefpour, M. & Taherian, Z. Synthesis of mesoporous silica/iron oxide nanocomposites and application of optimum sample as adsorbent in removal of heavy metals. Rare Met. 36, 942–950 (2017). https://doi.org/10.1007/s12598-016-0709-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0709-4

Keywords

Navigation