Skip to main content
Log in

Corrosion behavior of a novel Mg–13Li–X alloy with different grain sizes by rapid solidification rate

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As degradable biomaterials, the higher degradation rate of Mg–Li alloys in the physiological environment is the main challenge for the implant applications. In order to try and overcome this limitation, the present work was dedicated to studying the corrosion behavior of a novel Mg–13Li–X alloy fabricated by a rapid solidification process (RSP). The special Mg–13Li–X alloy was immersed in Hank’s balanced salt solution (HBSS), and the influence of immersion time on corrosion rate was analyzed. X-ray diffraction (XRD) and scanning electron microscopy (SEM), complemented with electrochemical techniques such as potentiodynamic polarization curves and electrochemical impedance spectroscopy, were applied. Microstructural characterization indicates that the mean grain sizes of RSP Mg–13Li–X alloy are 4.2, 8.2 and 12.7 μm with the solidification rate decreasing. By contrast, the conventional as-cast Mg–13Li–X alloy has an average grain size of about 150 μm. The results of electrochemical test indicate that the sample with 4.2 μm in grain size has the most positive corrosion potential (E corr) of −1.354 V and the minimum corrosion current (I corr) of 5.830 × 10−7 A·cm−2 after immersion for 2 h in HBSS. Therefore, the finest grain size can improve the polarization resistance of the alloy, reduce its corrosion current density and increase its corrosion resistance. However, because the weak layer of the corrosion product which consists of Mg(OH)2 does not afford strong protection, the corrosion resistance becomes worse after immersion for longer periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Plummer JD, Figueroa IA, Todd I. Phase stability, microstructure and mechanical properties of Li containing Mg-based bulk metallic glass composites. Mater Sci Eng A. 2012;546(6):103.

    Article  CAS  Google Scholar 

  2. Gao P, Xue Z, Liu G, Zhang J, Zhang M. Effects of Zn on the glass forming ability and mechanical properties of MgLi-based bulk metallic glasses. Non-Cryst Solids. 2012;358(1):8.

    Article  CAS  Google Scholar 

  3. Wu CS, Zhang Z, Cao FH, Zhang LJ, Zhang JQ, Cao CN. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Appl Surf Sci. 2007;253(8):3893.

    Article  CAS  Google Scholar 

  4. Witte F, Fischer J, Nellesen J, Crostack H, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013.

    Article  CAS  Google Scholar 

  5. Nagels J, Stokdijk ML, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elb Surg. 2003;12(1):35.

    Article  Google Scholar 

  6. Liu D, Wu B, Wang X, Chen M. Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid. Rare Met. 2015;34(8):553.

    Article  CAS  Google Scholar 

  7. Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83A(3):703.

    Article  CAS  Google Scholar 

  8. Chang T, Wang J, Chu C, Lee S. Mechanical properties and microstructures of various Mg–Li alloys. Mater Lett. 2006;60(27):3272.

    Article  CAS  Google Scholar 

  9. Chusid O, Gofer Y, Gizbar H, Vestfrid Y, Levi E, Aurbach D, Riech I. Solid-state rechargeable magnesium batteries. Adv Mater. 2003;15(78):627.

    Article  CAS  Google Scholar 

  10. Luo S, Zhang Q, Zhang Y, Chao L, Xu X, Zhou T. In vitro and in vivo studies on a Mg–Li–X alloy system developed as a new kind of biological metal. Mater Sci Forum. 2012;747(18):257.

    Google Scholar 

  11. Ballerini G, Bardi U, Bignucolo R, Ceraolo G. About some corrosion mechanisms of AZ91D magnesium alloy. Corros Sci. 2005;47(9):2173.

    Article  CAS  Google Scholar 

  12. Verdier S, van der Laak N, Delalande S, Metson J, Dalard F. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Appl Surf Sci. 2004;235(4):513.

    Article  CAS  Google Scholar 

  13. Yamasaki M, Hayashi N, Izumi S, Kawamura Y. Corrosion behavior of rapidly solidified Mg–Zn-rare earth element alloys in NaCl solution. Corros Sci. 2007;49(1):255.

    Article  CAS  Google Scholar 

  14. Liang J, Hu L, Hao J. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Appl Surf Sci. 2007;253(10):4490.

    Article  CAS  Google Scholar 

  15. Yamauchi N, Ueda N, Okamoto A, Sone T, Tsujikawa M, Oki S. DLC coating on Mg–Li alloy. Surf Coat Technol. 2007;201(9–11):4913.

    Article  CAS  Google Scholar 

  16. Zeng R, Sun L, Zheng Y, Cui H, Han E. Corrosion and characterization of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros Sci. 2014;79:69.

    Article  CAS  Google Scholar 

  17. Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ80D. Corros Sci. 1999;41(18):249.

    CAS  Google Scholar 

  18. Li Y, Zhang T, Wang F. Effect of microcrystallization on corrosion resistance of AZ91D alloy. Electrochim Acta. 2006;51(14):2845.

    Article  CAS  Google Scholar 

  19. Makar GL. Corrosion studies of rapidly solidified magnesium alloys. J Electrochem Soc. 1990;137(2):414.

    Article  CAS  Google Scholar 

  20. Zhao Y, Zhao X. Structural relaxation and its influence on the elastic properties and notch toughness of Mg–Zn–Ca bulk metallic glass. J Alloys Compd. 2012;515(15):154.

    Article  CAS  Google Scholar 

  21. Huan ZG, Leeflang MA, Zhou J, Fratila-Apachitei LE, Duszczyk J. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J Mater Sci Mater Med. 2010;21(9):2623.

    Article  CAS  Google Scholar 

  22. Jiang B, Zeng Y, Yin H, Li R, Pan F. Effect of Sr on microstructure and aging behavior of Mg–14Li alloys. Prog Nat Sci Mater Int. 2012;22(2):160.

    Article  Google Scholar 

  23. Wu L, Cui C, Wu R, Li J, Zhan H, Zhang M. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy. Mater Sci Eng A. 2011;528(4–5):2174.

    Article  Google Scholar 

  24. Zhang Y, Luo S, Zhang Q. Microstructures and mechanical properties of a new biomedical material Mg–13Li–X alloys. Mater Sci Forum. 2013;747:251.

    Article  Google Scholar 

  25. Zhang C, Huang X, Zhang M, Gao L, Wu R. Electrochemical characterization of the corrosion of a Mg–Li alloy. Mater Lett. 2008;62(14):2177.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 81270116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Tao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, BL., Chen, B., Wang, CW. et al. Corrosion behavior of a novel Mg–13Li–X alloy with different grain sizes by rapid solidification rate. Rare Met. 41, 3197–3204 (2022). https://doi.org/10.1007/s12598-015-0601-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0601-7

Keywords

Navigation