Rare Metals

, Volume 36, Issue 3, pp 209–219 | Cite as

Empirical model to predict mass gain of cobalt electroless deposition on ceramic particles using response surface methodology

  • Akbar Heidarzadeh
  • Reza Taherzadeh Mousavian
  • Rasoul Azari Khosroshahi
  • Yalda A. Afkham
  • Hesam Pouraliakbar
Article

Abstract

This investigation was undertaken to predict the mass gain (MG) of cobalt electroless deposition (ED) on ceramic SiC particles. Response surface methodology (RSM) based on a full factorial design with three ED parameters and 30 runs was used to conduct the experiments and to establish a mathematical model by means of Design-Expert software. Three ED parameters considered were pH, bath temperature and ceramic particle morphology. Analysis of variance was applied to validate the predicted model. The results of confirmation analysis by scanning electron microscopy (SEM) show that the developed models are reasonably accurate. The pH is the most effective parameter for the MG. Also, the highest mass gain is obtained for the lowest pH, highest bath temperatures and heat-treated SiC particles. In addition, the developed model shows that the optimal parameters to get a maximum value of mass gain are pH, bath temperature and ceramic particle state of 8, 70 °C and heat treatment, respectively.

Keywords

Electroless deposition Cobalt SiC particles Mathematical model Response surface method 

References

  1. [1]
    Valibeygloo N, Khosroshahi RA, Mousavian RT. Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner Metall Mater. 2013;20(10):978.CrossRefGoogle Scholar
  2. [2]
    Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceram Int. 2014;40(6):8323.CrossRefGoogle Scholar
  3. [3]
    Mohammadpour M, Khosroshahi RA, Mousavian RT, Brabazon D. A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating. Metall Mater Trans B. 2015;46(1):12.CrossRefGoogle Scholar
  4. [4]
    Roshan M, Mousavian RT, Ebrahimkhani H, Mosleh A. Fabrication of Al-based composites reinforced with Al2O3–TiB2 ceramic composite particulates using vortex-casting method. J Min Metall Sect B. 2013;49(3):299.CrossRefGoogle Scholar
  5. [5]
    Rohatgi P. Cast aluminum-matrix composites for automotive applications. JOM. 1991;43(4):10.CrossRefGoogle Scholar
  6. [6]
    Boostani AF, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Khosroshahi RA, Mousavian RT, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos A. 2015;68(2):155.CrossRefGoogle Scholar
  7. [7]
    Kaczmar J, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106(1):58.CrossRefGoogle Scholar
  8. [8]
    Mousavian RT, Damadi SR, Khosroshahi RA, Brabazon D, Mohammadpour M. A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites. Int J Adv Manuf Technol. 2015. doi: 10.1007/s00170-015-7246-4.Google Scholar
  9. [9]
    Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14.CrossRefGoogle Scholar
  10. [10]
    Emamy M, Nemati N, Heidarzadeh A. The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15% Mg2Si composite. Mater Sci Eng A. 2010;527(12):2998.CrossRefGoogle Scholar
  11. [11]
    Heidarzadeh A, Emamy M, Rahimzadeh A, Soufi R, Heidary DSB, Nasibi S. The effect of copper addition on the fluidity and viscosity of an Al–Mg–Si alloy. J Mater Eng Perform. 2014;23(2):469.CrossRefGoogle Scholar
  12. [12]
    Hashim J, Looney L, Hashmi M. Metal matrix composites: production by the stir casting method. J Mater Process Technol. 1999;92–93:1.CrossRefGoogle Scholar
  13. [13]
    Hashim J, Looney L, Hashmi M. The enhancement of wettability of SiC particles in cast aluminium matrix composites. J Mater Process Technol. 2001;119(1):329.CrossRefGoogle Scholar
  14. [14]
    Hashim J, Looney L, Hashmi M. The wettability of SiC particles by molten aluminium alloy. J Mater Process Technol. 2001;119(1):324.CrossRefGoogle Scholar
  15. [15]
    Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles. Ceram Int. 2014;40:12149.CrossRefGoogle Scholar
  16. [16]
    Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D. Electroless deposition (ED) of copper coating on micron-sized SiC particles. Surf Eng. 2014;30(10):747.CrossRefGoogle Scholar
  17. [17]
    Zou G, Cao M, Lin H, Jin H, Kang Y, Chen Y. Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Technol. 2006;168(2):84.CrossRefGoogle Scholar
  18. [18]
    Noori H, Mousavian RT, Khosroshahi RA, Brabazon D, Damadi SR. Effect of SiC particle morphology on Co–P electroless coating characteristics. Surf Eng. 2015. doi: 10.1179/1743294415Y.0000000035.Google Scholar
  19. [19]
    Deuis R, Subramanian C, Yellup J, Strafford K, Arora P. Study of electroless nickel plating of ceramic particles. Scr Metall Mater. 1995;33(8):1217.CrossRefGoogle Scholar
  20. [20]
    Wu Y, Li G, Zhang L. Wear resistance of electroless deposited Ni–P and Ni–P/SiC composite coatings on low alloy cast iron. Surf Eng. 2000;16(6):506.CrossRefGoogle Scholar
  21. [21]
    Luo L, Yu J, Luo J, Li J. Preparation and characterization of Ni-coated Cr3C2 powder by room temperature ultrasonic-assisted electroless plating. Ceram Int. 2010;36(6):1989.CrossRefGoogle Scholar
  22. [22]
    Mallory GO, Hajdu JB. Electroless Plating: Fundamentals and Applications. New York: Noyes Publication; 1990. 1.Google Scholar
  23. [23]
    Abrantes L, Correia J. On the mechanism of electroless Ni–P plating. J Electrochem Soc. 1994;141(9):2356.CrossRefGoogle Scholar
  24. [24]
    Ohno I. Electrochemistry of electroless plating. Mater Sci Eng A. 1991;146(1):33.CrossRefGoogle Scholar
  25. [25]
    Box GEP, Wilson KB. On the experimental attainment of optimal conditions. J R Stat Soc. 1951;13:1.Google Scholar
  26. [26]
    Box GEP, Hunter JS. Multi-factor experimental design for exploring response surfaces. Annal Math Stat. 1957;28:195.CrossRefGoogle Scholar
  27. [27]
    Farhanchi M, Neysari M, Barenji RV, Heidarzadeh A, Mousavian RT. Mechanical activation process for self-propagation high-temperature synthesis of ceramic-based composites. J Therm Anal Calorim. 2015. doi: 10.1007/s10973-015-4704-z.Google Scholar
  28. [28]
    Ilkhichi AR, Soufi R, Hussain G, Barenji RV, Heidarzadeh A. Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA 7020 aluminum alloy joints. Metall Mater Trans B. 2015;46(1):357.CrossRefGoogle Scholar
  29. [29]
    Heidarzadeh A, Barenji RV, Esmaily M, Ilkhichi AR. Tensile properties of friction stir welds of AA 7020 aluminum alloy. Trans Indian Inst Metals. 2015. doi: 10.1007/s12666-014-0508-2.Google Scholar
  30. [30]
    Chang BP, Akil HM, Affendy MG, Khan A, Nasir RBM. Comparative study of wear performance of particulate and fiber-reinforced nano-ZnO/ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Mater Des. 2014;63(2):805.CrossRefGoogle Scholar
  31. [31]
    Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, Nazari E. Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Mater Des. 2012;37:166.CrossRefGoogle Scholar
  32. [32]
    Heidarzadeh A, Saeid T. Prediction of mechanical properties in friction stir welds of pure copper. Mater Des. 2013;52(24):1077.CrossRefGoogle Scholar
  33. [33]
    Kha TC, Nguyen MH, Roach PD, Stathopoulos CE. Microencapsulation of Gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technol. 2014;264(3):298.CrossRefGoogle Scholar
  34. [34]
    Liu D, Huang C, Wang J, Zhu H, Yao P, Liu Z. Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceram Int. 2014;40(6):7899.CrossRefGoogle Scholar
  35. [35]
    Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, Ashtiyani MR, Salmankhani A. Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos B Eng. 2015;69:304.CrossRefGoogle Scholar
  36. [36]
    Oraon B, Majumdar G, Ghosh B. Improving hardness of electroless Ni–B coatings using optimized deposition conditions and annealing. Mater Des. 2008;29(7):1412.CrossRefGoogle Scholar
  37. [37]
    Oraon B, Majumdar G, Ghosh B. Parametric optimization and prediction of electroless Ni–B deposition. Mater Des. 2007;28(7):2138.CrossRefGoogle Scholar
  38. [38]
    Poroch-Seritan M, Gutt S, Gutt G, Cretescu I, Cojocaru C, Severin T. Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process. Chem Eng Res Des. 2011;89(2):136.CrossRefGoogle Scholar
  39. [39]
    Choudhury BS, Sen RS, Oraon B, Majumdar G. Statistical study of nickel and phosphorus contents in electroless Ni–P coatings. Surf Eng. 2009;25(5):410.CrossRefGoogle Scholar
  40. [40]
    Montgomery DC. Design and Analysis of Experiments. 5th ed. New York: Wiley; 2001. 239.Google Scholar
  41. [41]
    Heidarzadeh A, Saeid T, Khodaverdizadeh H, Mahmoudi A, Nazari E. Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints. Metall Mater Trans B. 2013;44(1):175.CrossRefGoogle Scholar
  42. [42]
    Jiang JT, Zhen L, Xu CY, Wu XL. Microstructure and magnetic properties of SiC/Co composite particles prepared by electroless plating. Surf Coat Technol. 2006;201(6):3139.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Department of Materials EngineeringSahand University of TechnologyTabrizIran
  3. 3.Department of Advanced MaterialsWorldTech Scientific Research Center (WT-SRC)TehranIran

Personalised recommendations