Rare Metals

, Volume 36, Issue 3, pp 202–204 | Cite as

Structure and magnetic properties of NiCuZn ferrite materials with La doping

  • Yuan-Xun Li
  • Jie Li
  • Qiang Li
  • Guo-Liang Yu
  • Huai-Wu Zhang


Ni0.3Cu0.07Zn0.63Fe2-x La x O4 ferrites were prepared by solid phase method and sintered at 1,150 °C for 6 h. The phase formation, microstructure, and magnetic properties of samples were investigated. With doping of La3+, the samples contain two phases: LaFeO3 and NiCuZn ferrites. Scanning electron microscope (SEM) image shows that La doping constrains the growth of NiCuZn ferrite, which is more uniform. La doping improves magnetic properties of NiCuZn ferrite when x ≤ 0.03. The saturation magnetization (M s) increases first; when x = 0.03, the highest value is 75.35 A·m2·kg-1. The permeability increases to the maximum value with frequency and then decreases with the concentration of La3+ increasing. When x = 0.03, the maximum value of real permeability at 1 MHz is 333.5, and the loss angle tangent (tanδ) is not more than 0.02. La doping improves the properties of NiCuZn ferrite, which can be applied to low-frequency filters.


NiCuZn ferrite La doping Properties 



This work was financially supported by the National Basic Research Program of China (No. 2012CB933100), the National Natural Science Foundation of China (Nos. 61001025 and 51132003), and the Second Item of Strongpoint Industry of Guangdong Province (No.2012A090100001).


  1. [1]
    Wang YY, Zhang HW, Li L, He Y, Ling WW. Effect of CaO-B2O3-SiO2 glass on the magnetic and dielectric properties of NiCuZn ferrites. J Magn Magn Mater. 2012;324(4):471.CrossRefGoogle Scholar
  2. [2]
    Chen DM, Liu YL, Li YX, Yang K, Zhang HW. Texture and self-biased property of an oriented M-type barium ferrite thick film by tape casting. Chin Phys B. 2012;21(6):067502.CrossRefGoogle Scholar
  3. [3]
    Sun K, Lan ZW, Yu Z, Jiang XN, Huang JM. Phase formation, grain growth and magnetic properties of NiCuZn ferrite. J Magn Magn Mater. 2011;323(7):927.CrossRefGoogle Scholar
  4. [4]
    Deng XL, Han L, Liang QS, Liu XJ, Wu XJ, Meng J. Effect of rhenium doping on band structure and thermoelectronic properties of Mo2Sb7. Chin J Rare Met. 2013;37(6):902.Google Scholar
  5. [5]
    Luo JH. Synthesis of NiCuZn-ferrite powders by means of mechanochemical treatment. Mater Res Bull. 2013;48(9):3527.CrossRefGoogle Scholar
  6. [6]
    Ji DH, Hou X, Tang GD, Li ZZ, Hou DL, Zhu MG. Oxygen content and magnetic properties of composites La0.75Sr0.25MnOδ calcined at different temperatures. Rare Met. 2014;33(4):452.CrossRefGoogle Scholar
  7. [7]
    Ch S, Reddy KV, Babu KS, Reddy AR, Rao KH. Structure and magnetic properties of Mg substituted NiCuZn nano ferrite. Phys B. 2012;407(8):1232.CrossRefGoogle Scholar
  8. [8]
    Li J, Zhang HW, Li YX, Liu YL, Ma YB. The structural and magnetic properties of barium ferrite powders prepared by the sol–gel method. Chin Phys B. 2012;21(1):017501.CrossRefGoogle Scholar
  9. [9]
    Zhang SN, Jia LJ, Zhang HW, Bai FM, Liu BY. Influences of calcination temperature on densification and magnetic properties of Bi-modified NiCuZn ferrites. IEEE Trans Magn., 2013; 49(9): 4284.Google Scholar
  10. [10]
    Li LZ, Tu XQ, Peng L, Zhu XH. Structure and static magnetic properties of Zr-substituted NiZn ferrite thin films synthesized by sol-gel process. J Alloys Compd. 2012;545(25):67.CrossRefGoogle Scholar
  11. [11]
    Eltabey MM, El-Shokrofy KM, Gharbia SA. Enhancement of the magnetic properties of Ni-Cu-Zn ferrites by the non-magnetic Al3+-ions substitution. J Alloys Compd. 2011;509(5):2473.CrossRefGoogle Scholar
  12. [12]
    Xia AL, Jin CG, Du DX, Sun YX, Tong LN. Effects of impurity Na+ ions on the structural and magnetic properties of Ni-Cu-Zn ferrite powders: an improvement for chemical coprecipitation method. J Magn Magn Mater. 2011;323(15):2080.CrossRefGoogle Scholar
  13. [13]
    Su H, Zhang HW, Tang XL, Jing YL. Microstructure and magnetic properties of Ni-Zn ferrites doped with MnO2. Trans Nonferrous Met Soc China. 2011;21(1):109.CrossRefGoogle Scholar
  14. [14]
    Gabal MA, Angari YMA. Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J Magn Magn Mater. 2011;322(20):3159.CrossRefGoogle Scholar
  15. [15]
    Zhong ZY, Zhang HW, Tang XL, Jing YL, Bai FM, Liu S. Microstructure and magnetic properties of CoFe2O4 thin films deposited on Si substrate with an Fe3O4 under-layer. Sci China-Phys Mech Astron. 2011;54(7):1235.CrossRefGoogle Scholar
  16. [16]
    Hossian AKMA, Rahman ML. Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.5-xCuxZn0.50Fe2O4 ferrites. J Magn Magn Mater. 2011;323(15):1954.CrossRefGoogle Scholar
  17. [17]
    Xin XG, Shen JQ, Shi SQ. Structural and magnetic properties of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ spinels: a first-principles study. Chin Phys B. 2012;21(12):128202.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yuan-Xun Li
    • 1
    • 2
  • Jie Li
    • 1
  • Qiang Li
    • 1
  • Guo-Liang Yu
    • 1
  • Huai-Wu Zhang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Institute of Electronic and Information Engineering in DongguanUniversity of Electronic Science and Technology of ChinaDongguanChina

Personalised recommendations