Skip to main content

Mechanical properties and microstructure of in situ formed Ti2AlN/TiAl(WMS) composites


The Ti2AlN-reinforced TiAl (WMS) composites with different contents of Ti2AlN were prepared by an in situ method of reactive arc-melting technique. According to the results of X-ray diffraction (XRD) analysis, the Ti2AlN-reinforced WMS composites consist of γ-TiAl, α2-Ti3Al, and Ti2AlN phases. Microstructure analysis results indicate that Ti2AlN reinforcements with rod-like in shape form in the WMS matrix with a α2/γ lamellar structure containing some bulk γ phases. With volume fraction of Ti2AlN increasing, the grain size of the composites decreases significantly and the elasticity modulus (E) increases. The compressive strength and compressive fracture strain of the composite with 3 vol% Ti2AlN have a maximum value of 1,654 MPa and 22.5 %, respectively, which are approximately improved by 45.84 % and 29.31 %, respectively, compared with that of the unreinforced WMS alloy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. [1]

    Bhowal PR, Merrick HF, Larsen DE Jr. Microstructure and properties of a creep-resistant, cast γ-titanium aluminide. Mater Sci Eng, A. 1995;192–193:685.

    Article  Google Scholar 

  2. [2]

    Chen WR, Beddoes J, Zhao L. Precipitation hardening of the fully lamellar structure of investment cast Ti–47Al–2Nb–1Mn–0.5Mo–0.5 W–0.2Si alloy. Scripta Mater. 1999;41(6):597.

    CAS  Article  Google Scholar 

  3. [3]

    Beddoes J, Seo DY, Chen WR, Zhao L. Relationship between tensile and primary creep properties of near γ-TiAl intermetallics. Intermetallics. 2001;9(10):915.

    CAS  Article  Google Scholar 

  4. [4]

    Zhu H, Seo DY, Maruyama K. Strengthening of lamellar TiAl alloys by precipitation bands of β0 particle. Mater Sci Eng A. 2009;510–511:14.

    Article  Google Scholar 

  5. [5]

    Cerreta E, Chen SR, Gray IIIGT. Pollock TM. Dynamic deformation and damage in cast γ-TiAl during taylor cylinder impact: experiments and model validation. Metallurg Mater Trans A. 2004;35(9):2557.

    Article  Google Scholar 

  6. [6]

    Locci IE, Brady MP, Smialek JL. Long term oxidation of model and engineering TiAl alloys, Materials Research Society Symposium Proceedings, 2001, 646: N5.50.1.

  7. [7]

    Wei Y, Zhang Y, Lu GH, Xu HB. A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti3Al alloy. Sci China-Phys Mech Astron. 2012;55(2):228.

    CAS  Article  Google Scholar 

  8. [8]

    Qi W, Wang S, Chen X, Nong D, Zhou Z. Effective nucleation phase and grain refinement mechanism of Al-5Ti-1B master alloy. Chin J Rare Met. 2013;37(2):179.

    CAS  Google Scholar 

  9. [9]

    Xiang L, Wang F, Zhu J, Wang X. Mechanical properties and microstructure of Al2O3/TiAl in situ composites doped with Cr2O3. Mater Sci Eng A. 2011;528(9):3337.

    Article  Google Scholar 

  10. [10]

    Cao L, Wang HW, Zou CM, Wei ZJ. Microstructural characterization and micromechanical properties of dual-phase carbide in arc-melted titanium aluminide base alloy with carbon addition. J Alloy Compd. 2009;484(1):816.

    CAS  Article  Google Scholar 

  11. [11]

    Sun T, Wang Q, Sun DL, Wu GH, Na Y. Study on dry sliding friction and wear properties of Ti2AlN/TiAl composite. Wear. 2010;268(5):693.

    CAS  Article  Google Scholar 

  12. [12]

    Niu HZ, Xiao SL, Kong FT, Zhang CJ, Chen YY. Microstructure characterization and mechanical properties of TiB2/TiAl in situ composite by induction skull melting process. Mater Sci Eng A. 2012;532:522.

    CAS  Google Scholar 

  13. [13]

    Rao KP, Vyas A. Comparison of titanium silicide and carbide reinforced in situ synthesized TiAl composites and their mechanical properties. Intermetallics. 2011;19(8):1236.

    CAS  Article  Google Scholar 

  14. [14]

    Leyens C, Flores-Renteria A, Garkas W. Synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings manufactured in an industrial-size coater. Adv Mater Res. 2010;89–91:208.

    Google Scholar 

  15. [15]

    Yeh CL, Shen YG. Formation of TiAl–Ti2AlC in situ composites by combustion synthesis. Intermetallics. 2009;17(3):169.

    CAS  Article  Google Scholar 

  16. [16]

    Shu S, Qiu F, Lü S, Jin S, Jiang Q. Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction. Mater Sci Eng A. 2012;539:344.

    CAS  Article  Google Scholar 

  17. [17]

    Mabuchi H, Morimoto H, Kakitsuji A, Tsuda H, Matsui T, Morii K. Microstructure and mechanical properties of Ll2-(Al, Cr)3Ti/Ti2AlN composites produced by reactive arc-melting. Scripta Mater. 2001;44(10):2503.

    CAS  Article  Google Scholar 

  18. [18]

    Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1991;26(5):1137.

    CAS  Article  Google Scholar 

  19. [19]

    Zhu JF, Yang WW, Gong YP. Effect of carbon addition on the microstructure and mechanical properties of the in situ formed TiAl/Ti2AlC composites. Adv Mater Res. 2011;217–218:680.

    Article  Google Scholar 

Download references


This study was financially supported by the National Basic Research Program of China (No. 2011CB605503) and the Program of Introducing Talents of Discipline to Universities (No. B08040).

Author information



Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, WL., Hu, R., Liu, YW. et al. Mechanical properties and microstructure of in situ formed Ti2AlN/TiAl(WMS) composites. Rare Met. 40, 190–194 (2021).

Download citation


  • Ti2AlN/TiAl (WMS) composites
  • Reactive arc-melting
  • Microstructure
  • Compressive properties