Rare Metals

, Volume 36, Issue 3, pp 198–201 | Cite as

Energy band alignment of HfO2 on p-type (100)InP

  • Meng-Meng Yang
  • Hai-Ling Tu
  • Jun Du
  • Feng Wei
  • Yu-Hua Xiong
  • Hong-Bin Zhao
  • Xin-Qiang Zhang


The band alignment of HfO2 film on p-type (100) InP substrate grown by magnetron sputtering was investigated. The chemical states and bonding characteristics of the system were characterized by X-ray photoelectron spectroscopy (XPS). The results show that there is no existence of Hf–P or Hf–In and there are interfacial In2O3 and InPO4 at the interface. Ultraviolet spectrophotometer (UVS) was employed to obtain the band gap value of HfO2. In 3d and Hf 4f core-level spectra and valence spectra were employed to obtain the valence band offset of HfO2/InP. Experimental results show that the (5.88 ± 0.05) eV band gap of HfO2 is aligned to the band gap of InP with a conduction band offset (∆E c) of (2.74 ± 0.05) eV and a valence band offset (∆E v) of (1.80 ± 0.05) eV. Compared with HfO2 on Si, HfO2 on InP exhibits a much larger conduction band offset (1.35 eV larger), which is beneficial to suppress the tunneling leakage current.


Band alignment HfO2 InP Large conduction band offset 



This study was financially supported by the National Natural Science Foundation of China (Nos. 50932001, 51102020, and 51202013).


  1. [1]
    Robertson J. High dielectric constant oxide. Eur Phys J Appl Phys. 2004;28(3):265.CrossRefGoogle Scholar
  2. [2]
    Ceresoli D, Vanderbilt D. Structural and dielectric properties of amorphous ZrO2 and HfO2. Phys Rev B: Condens Matter. 2006;74(12):5108.CrossRefGoogle Scholar
  3. [3]
    Robertson J. High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys. 2006;69(2):327.CrossRefGoogle Scholar
  4. [4]
    Connor EO, Long RD, Cherkaoui K, Thomas KK, Chalvet F, Povey IM, Pemble ME, Hurley PK, Brennan B, Hughes G, Newcomb SB. In situ H2S passivation of In0.53Ga0.47As/InP metal-oxide-semiconductor capacitors with atomic-layer deposited HfO2 gate dielectric. Appl Phys Lett. 2008;92(2):2902.Google Scholar
  5. [5]
    Kwo J, Hong M, Busch B, Muller DA, Chabal YJ, Kortan AR, Mannaerts JP, Yang B, Ye P, Gossmann H, Sergent AM, Ng KK, Bude J, Schulte WH, Garfunkel E, Gustafsson T. Advances in high K gate dielectrics for Si and III-V semiconductors. J Cryst Growth. 2003;251(1–4):645.CrossRefGoogle Scholar
  6. [6]
    Tian BL, Chen C, Li YR, Zhang WL, Liu XZ. Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors. Chin Phys B. 2012;21(12):126102.CrossRefGoogle Scholar
  7. [7]
    Kortan AR, Hong M, Kwo J, Mannaerts JP, Kopylov N. Structure of epitaxial Gd2O3 films grown on GaAs(100). Phys Rev B. 1999;60(15):10913.CrossRefGoogle Scholar
  8. [8]
    Galatage RV, Dong H, Zhernokletov DM, Brennan B, Hinkle CL, Wallace RM, Vogel EM. Effect of post deposition anneal on the characteristics of HfO2/InP metal-oxide-semiconductor capacitors. Appl Phys Lett. 2011;99(17):2901.CrossRefGoogle Scholar
  9. [9]
    Kim HS, Ok I, Zhang M, Zhu F, Park S, Yum J, Zhao H, Lee JC, Majhi P. HfO2-based InP n-channel metal-oxide-semiconductor field-effect transistors and metal-oxide-semiconductor capacitors using a germanium interfacial passivation layer. Appl Phys Lett. 2008;93(10):2906.Google Scholar
  10. [10]
    Roberston J, Falabretti B. Band offsets of high K gate oxides on III-V semiconductors. J Appl Phys. 2006;100(1):4111.Google Scholar
  11. [11]
    Roberston J, Falabretti B. Band offsets of high K gate oxides on high mobility semiconductors. Mater Sci Eng B. 2006;135(3):267.CrossRefGoogle Scholar
  12. [12]
    Xu K, Sio H, Kirillov OA, Dong L, Xu M. Band offset determination of atomic-layer-deposited Al2O3 and HfO2 on InP by internal photoemission and spectroscopic ellipsometry. J Appl Phys. 2013;113(2):4504.CrossRefGoogle Scholar
  13. [13]
    Xiong Y, Tu H, Du J, Ji M, Zhang X, Wang L. Band structure and electrical properties of Gd-doped HfO2 high K gate dielectric. Appl Phys Lett. 2010;97(1):2901.CrossRefGoogle Scholar
  14. [14]
    Kikuchi D, Adachi S. Chemically cleaned InP(100) surfaces in aqueous HF solutions. Mater Sci Eng B. 2000;76(2):133.CrossRefGoogle Scholar
  15. [15]
    Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP. Precise determination of the valence-band edge in X-ray photomission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett. 1980;44(24):1620.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Meng-Meng Yang
    • 1
  • Hai-Ling Tu
    • 1
    • 2
  • Jun Du
    • 1
  • Feng Wei
    • 1
  • Yu-Hua Xiong
    • 1
  • Hong-Bin Zhao
    • 1
  • Xin-Qiang Zhang
    • 1
  1. 1.Advanced Electronic Materials InstituteGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.National Engineering Research Center for Semiconductor MaterialsGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations