Abstract
The elastic, optical, and effective mass properties of CrSb in zinc-blende (ZB) phase were investigated. The calculations were carried out using the full-potential linearized augmented plane wave plus local orbital according to the density functional theory. The results of elastic calculations by generalized gradient approximation and local density approximation approximations indicate that ZB CrSb is a ductile material and its Debye temperature is rather low. Band structure and density of state calculations introduce the ZB CrSb as a half-metal with spin polarization of 100 %. In metal state, 16th and 17th bands cut off the Fermi level. Calculations study the effective mass, Fermi velocity, and Fermi surface at 16th and 17th bands. In continue, optical quantities such as dielectric function, energy loss function, and optical conductivity were investigated.
Similar content being viewed by others
References
Prinz GA. Magnetoelectronics. Science. 1998;282(5394):1660.
Ball P. Meet the spin doctors. Nature. 2000;404:918.
Grünberg P. Layered magnetic structures: history, highlights, applications. Phys Today. 2001;54(5):31.
Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnár S, Roukes ML, Chtchelkanova AY, Treger DM. Spintronics: a spin-based electronics vision for the future. Science. 2001;294(5546):1488.
De Groot RA, Muller FM, Engen PG, Buschow KHJ. New class of materials: half-metallic ferromagnets. Phys Rev Lett. 1983;50(25):2024.
Schwarz K. CrO2 predicted as a half-metallic ferromagnet. J Phys F Met Phys. 1986;16(9):L211.
Yanase A, Siratori K. Band structure in the high temperature phase of Fe3O4. J Phys Soc Jpn. 1984;53:312.
Plake T, Ramsteiner M, Kaganer VM, Jenichen B, Kastner M, Daweritz L, Ploog KH. Periodic elastic domains of coexisting phases in epitaxial MnAs films on GaAs. Appl Phys Lett. 2002;80(14):2523.
Ono K, Okabayashi J, Mizuguchi M, Oshima M, Fujimori A, Akinaga H. Fabrication, magnetic properties, and electronic structures of nanoscale zinc-blende MnAs dots. J Appl Phys. 2002;91(10):8088.
Akinaga H, Manago T, Shirai M. Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy. Jpa J Appl Phys. 2000;39:L1118.
Mizuguchi M, Akinaga H, Manago T, Ono K, Oshima M, Shirai M, Yuri M, Lin HJ, Hsieh HH, Chen CT. Epitaxial growth of zinc-blende CrAs/GaAs multilayer. J Appl Phys. 2002;91(10):7917.
Zhao JH, Matsukura F, Takamura K, Abe E, Chiba D, Ohno H. Room-temperature ferromagnetism in zinc blende CrSb grown by molecular-beam epitaxy. Appl Phys Lett. 2001;79(17):2776.
Radhakrishna P, Cable JW. Inelastic-neutron-scattering studies of spin-wave excitations in the pnictides MnSb and CrSb. Phy Rev B. 1996;54(17):11940.
Boochani A, Abolhasani MR, Ghoranneviss M, Elahi M. First principles study of half metallic properties of VSb surface and VSb/GaSb (001) interface. Commun Theor Phys. 2010;54(1):148.
Sartipi E, Hojabri A, Boochani A, Shakib MH. First principles study of half-metallic properties at MnSb/GaSb(001) interface. Chin J Chem Phys. 2011;24(2):155.
Shirai M. Possible half-metallic ferromagnetism in zinc blende CrSb and CrAs. J Appl Phys. 2003;93(10):6844.
Liu BG. Robust half-metallic ferromagnetism in zinc-blende CrSb. Phys Rev B. 2003;67(17):172411.
Pask JE, Yang LH, Fong CY, Pickett WE, Dag S. An Six low-strain zinc-blende half metals: ab initio investigation. Phys Rev B. 2003;67(22):224420.
Blaha P, Shwarz K, Sorantin P, Trickey SB. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput Phys Commun. 1990;59(2):399.
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):B864.
Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45(23):13244.
Langreth DC, Perdew JP. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys Rev B. 1980;21(12):5469.
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892.
Mellouki A, Kalarasse L, Bennecer B, Kalarasse F. First principles calculations of the structural and elastic properties of the filled tetrahedral compounds LiCdX (X = N, P, As). Comput Mater Sci. 2008;42(4):579.
Mehl MJ, Klein BM, Papaconstantopoulos DA. Intermetalic Compounds: Principles and Practice. In: Westbrook JH, Fleisher RL, editors. Principles, vol. I. London: Wiley; 1995. 195.
Ravindran P, Fast L, Korzavyi PA, Johansson B, Will J, Eriksoon O. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys. 1998;84(9):4891.
Walecka JD. Fundamental of Statistical Mechanics: Manuscript and Notes of Felix Bloch. London: Imperial College Press/World Scientific; 2000. 72.
Kokalj A. XCrySDen—a new program for displaying crystalline structures and electron densities. J Mol Graph Model. 1999;17(3–4):176.
Acknowledgments
This work was financially supported by Islamic Azad University (No. 67154281), Kermanshah Branch, Kermanshah, Iran. This work was jointly supported by the Simulation of Nano Physics Laboratory Center of Kermanshah Branch, Islamic Azad University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rezaee, S., Boochani, A., Majidiyan, M. et al. Elastic and optical properties of zinc-blende CrSb and its effective mass. Rare Met. 33, 615–621 (2014). https://doi.org/10.1007/s12598-014-0233-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12598-014-0233-3