Skip to main content
Log in

Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface. Furthermore, its composition, morphology, structure, and activity towards methanol oxidation were characterized by UV-vis spectrometry, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1:2, this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media, and the peak current density on this catalyst is ~2.0 times higher than that on Pt/C catalyst. The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang L., Chen J.H., and Zhong X.X., Au@Pt nanoparticles prepared by one-phase protocol and their electrocatalytic properties for methanol oxidation, J. Colloids Surf. A, 2007, 295(1/2/3): 21.

    Article  CAS  Google Scholar 

  2. Jeyabharathi C., Venkateshkumar P., Mathiyarasu J., and Phani K.L.N., Platinum-tin bimetallic nanoparticles for methanol tolerant oxygen-reduction activity, Electrochimica Acta, 2008, 54(2): 448.

    Article  CAS  Google Scholar 

  3. Yi Q.F., and Niu F.J., Novel nanoporous palladium catalyst for electroreduction of hydrogen peroxide, Rare Metals, 2011, 30(4): 332.

    Article  CAS  Google Scholar 

  4. Baschuk J.J., and Li X., Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res., 2001, 25(8): 695.

    Article  CAS  Google Scholar 

  5. Kristain N., and Wang X., Ptshell-Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions, Electrochem. Commun., 2008, 10(1): 12.

    Article  Google Scholar 

  6. Luo J., Njoki P.N., Y. Lin Y., Mott D., Wang L.Y., and Zhong C.J., Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction, Langmuir., 2006, 22(6): 2892.

    Article  CAS  Google Scholar 

  7. Montero M.A., Gennero de Chialvo M.R., and Chialvo A.C., Electrocatalytic activity of core-shell Au@Pt nanoparticles for the hydrogen oxidation reaction, Int. J. Hydrogen Energy, 2011, 36(6): 3811.

    Article  CAS  Google Scholar 

  8. Zhao Y., Yang X., Tian J., Wang F., and Zhan L., Methanol electrooxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media, Int. J. Hydrogen Energy, 2010, 35(19): 3249.

    Article  CAS  Google Scholar 

  9. Yancey D.F., Carino E.V., and Crooks P.M., Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles, J. Am. Chem. Soc., 2010, 132(32): 10988.

    Article  CAS  Google Scholar 

  10. Kung M.C., Davis R.J., and Kung H.H., Understanding Au-catalyzed low temperature CO oxidation, J. Phys. Chem. C., 2007, 111(32): 11767.

    Article  CAS  Google Scholar 

  11. Ataee-Esfahani H., Wang L., Nemoto Y., and Yamauchi Y., Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts, Chem. Mater., 2010, 22(8): 6310.

    Article  CAS  Google Scholar 

  12. Bezerra C.W.B., Zhang L., Lee K.C., Liu H.S., Marques A.L.B., Marques E.P., Wang H.J., and Zhang J.J, A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction, Electrochim. Acta, 2008, 53(15): 4937.

    Article  CAS  Google Scholar 

  13. Gao G., Liu A.F., Hu Z.H., Xu Y.Y., and Liu Y.F., Synthesis of LiFePO4/C as cathode material by a novel optimized hydrothermal method, Rare Metals, 2011, 30(5): 433.

    Article  Google Scholar 

  14. Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nat. Phys. Sci., 1973, 241(105): 20.

    CAS  Google Scholar 

  15. Velázquez-Palenzuela A., Centellas F., Garrido J.A., Arias C., Rodríguez R.M., Brillas E., and Cabot P.L., Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt-Ru electrocatalyst for direct methanol fuel cells, J. Power Sources, 2011, 196(7): 3503.

    Article  Google Scholar 

  16. Li X.W., Liu J.Y., He W., Huang Q.H., and Yang H., Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction, J. Colloid Interface Sci., 2010, 344(1): 132.

    Article  CAS  Google Scholar 

  17. Cen L., Neoh K.G., Cai Q.J., and Kang E.T., Au-Pt bimetallic nanoparticles formation via viologen-mediated reduction on polymeric nanospheres, J. Colloid Interface Sci., 2006, 300(1): 190.

    Article  CAS  Google Scholar 

  18. Gennero de Chialvo M.R., and Chialvo A.C., Recent progress in the kinetics of the hydrogen electrode reaction in steady state, Curr. Top Electrochem., 2006, 11: 1.

    CAS  Google Scholar 

  19. Zhang J., Sasaki K., Sutter E., and Adzic R.R., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters, Science, 2007, 315(5809): 220.

    Article  CAS  Google Scholar 

  20. Xu Y.Y., Dong Y.N., Shi J., Xu M.L., Zhang Z.F., and Yang X.K., Au@Pt core-shell nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation, Catal. Commum., 2011, 13: 54.

    Article  CAS  Google Scholar 

  21. Kumar S. S., and Phani K.L.N., Exploration of unalloyed bimetallic Au-Pt/C nanoparticles for oxygen reduction reaction, J. Power Sources, 2009, 187(1):19.

    Article  CAS  Google Scholar 

  22. Wanjala B.N., Luo J., Loukrakpam R., Fang B., Mott D., Njoki P.N., Engelhard M., Naslund H.R., Wu J.K., Wang L., Malis O., and Zhong C.J., Nanoscale alloying, phase-segregation, and core-shell evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction, Chem. Mater., 2010, 22: 4282.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, R., Li, M. & Liu, J. Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation. Rare Metals 31, 451–456 (2012). https://doi.org/10.1007/s12598-012-0538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0538-z

Keywords

Navigation