Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst

Abstract

The graphitic carbon nitride (g-C3N4) was synthesized by the polymerization of dicyandiamide, then silver hybrid g-C3N4 (Ag/g-C3N4) catalyst was prepared by photodeposition, deposition-precipitation, and doping methods. The first two methods deposited silver nanoparticles on the surface of g-C3N4 semiconductor, while the last one embedded silver atom into the g-C3N4 matrix without destroying the host structure. The photodegradation behavior of methylene blue (MB) aqueous solution over Ag/g-C3N4 catalyst was performed to evaluate the photocatalytic activity of the as-prepared samples. The samples were characterized by XRD, UV-vis spectroscopy, FT-IR spectroscopy, elemental analysis and TEM. The experiment results indicate that the Ag/g-C3N4 prepared by the doping method possesses the best photocatalytic activity, which can be explained by promoting the transfer of electron due to the formation of organic-metal hybrid material.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Wang X.C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., and Domen K., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 2009, 8(1): 76.

    Article  CAS  Google Scholar 

  2. [2]

    Wang X.C., Maeda K., Chen X.F., Takanabe K., Domen K., Hou Y.D., Fu X.Z., and Antonietti M., Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc., 2009, 131(5): 1680.

    Article  CAS  Google Scholar 

  3. [3]

    Maeda K., Wang X.C., Nishihara Y., Lu D.L., Antonietti M., and Domen K., Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light, J. Phys. Chem. C, 2009, 113(12): 4940.

    Article  CAS  Google Scholar 

  4. [4]

    Yan S.C., Li Z.S., and Zou Z.G., Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 2009, 25(17): 10397.

    Article  CAS  Google Scholar 

  5. [5]

    Wang X.C., Chen X.F., Thomas A., Fu X.Z., and Antonietti M., Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material, Adv. Mater., 2009, 21(16): 1609.

    Article  CAS  Google Scholar 

  6. [6]

    Nishimoto S.-I., Ohtani B., Kajiwara H., and Kagiya T., Photoinduced oxygen formation and silver-metal deposition in aqueous solutions of various silver salts by suspended titanium dioxide powder, J. Chem. Soc., Faraday Trans., 1983, 79(11): 2685.

    Article  CAS  Google Scholar 

  7. [7]

    Di Y., Wang X.C., Thomas A., and Antonietti M., Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light, Chem. Cat. Chem., 2010, 2(7): 834.

    CAS  Google Scholar 

  8. [8]

    Goettmann F., Fischer A., Thomas A., and Antonietti M., Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene, Angew. Chem., Int. Ed., 2006, 45(27): 4467.

    Article  CAS  Google Scholar 

  9. [9]

    Bojdys M.J., Müller J.O., Antonietti M., and Thomas A., Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride, Chem.-Eur. J., 2008, 14(27): 8177.

    Article  CAS  Google Scholar 

  10. [10]

    Komatsu T., Attempted chemical synthesis of graphite-like carbon nitride, J. Mater. Chem., 2001, 11(3): 799.

    Article  CAS  Google Scholar 

  11. [11]

    Komatsu T., Prototype carbon nitrides similar to the symmetric triangular form of melon, J. Mater. Chem., 2001, 11(3): 802.

    Article  CAS  Google Scholar 

  12. [12]

    Li X.F., Zhang J., Shen L.H., Ma Y.M., Lei W.W., Cui Q.L., and Zou G.T., Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. A: Mater. Sci. Proc., 2009, 94(2): 387.

    Article  CAS  Google Scholar 

  13. [13]

    Komatsu T., The first synthesis and characterization of cyameluric high polymers, Macromol. Chem. Phys., 2001, 202(1): 19.

    Article  CAS  Google Scholar 

  14. [14]

    Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J.O., Schlogl R., and Carlsson J.M., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 2008, 18(41): 4893.

    Article  CAS  Google Scholar 

  15. [15]

    Zhang Y.J., Mori T., Ye J.H., and Antonietti M., Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation, J. Am. Chem. Soc., 2010, 132(18): 6294.

    Article  CAS  Google Scholar 

  16. [16]

    Gao B.F., Ma Y., Cao Y.A., Yang W.S., and Yao J.N., Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide, J. Phys. Chem. B, 2006, 110(29): 14391.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Xin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meng, Y., Shen, J., Chen, D. et al. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Metals 30, 276–279 (2011). https://doi.org/10.1007/s12598-011-0284-7

Download citation

Keywords

  • graphitic carbon nitride
  • photodegradation
  • precipitation
  • doping